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SUMMARY 

 

The use of image processing and quantitative feature extraction in the biological 

sciences has become increasingly prominent in recent years, as advances in equipment 

and high-throughput imaging techniques allow the collection of increasing amount of 

high-quality images and video. With high-volume, quantitative phenotypic descriptors, it 

becomes possible to elucidate previously unseen aspects of the genotype-phenotype 

relationship and neural function, making the efficient parameterization and statistical 

analysis of large amounts of data. By developing and applying computational techniques 

to the rapid processing of C. elegans images and video, this thesis aims to explore both 

the relationship between synapse-affecting genes and synaptic morphology and the neural 

function of the C. elegans connectome as a whole. In this, I focus on the characterization 

of neural structure and development through the analysis of still images, and of neural 

function by the analysis of video data.  

To address the first of these, in the first aim I examine a pre-existing imaging and 

processing pipeline in the Lu Lab, which had previously been used to characterize and 

sort bright, fluorescently-labeled synaptic markers. In order to expand the applicability of 

the pipeline to new strains, dimmer and more precise synaptic markers, and subtler 

phenotypes, I refined the image processing algorithms used to be more robust to different 

imaging conditions, in particular the presence of confounding objects.  This is used to 

more broadly and accurately characterize the effects of already-established synaptic 

mutants by examining synaptic domains in a more statistical and quantitative manner. We 



 xv 

also illustrate the broad applicability of the segmentation approach used by touching upon 

applications outside C. elegans. 

In the second aim, we perform a novel application of Quantitative Trait Loci 

(QTL) analysis to heterozygotes between synaptically-labeled strains and Recombinant 

Inbred Lines (RILs) between the N2 and CB4856 strains of C. elegans, demonstrating the 

ability to perform QTL analysis on a fluorescent marker phenotype for which this is 

otherwise infeasible.  The advantages of the image processing pipeline established in the 

first aim allowed us to mitigate the technical downsides of using heterozygotes for QTL, 

allowing us to greatly expand the versatility of QTL analysis for a variety of markers. 

This enables us to use our quantitative, high-volume data to statistically predict the 

locations of synapse-influencing natural variants in the C. elegans genome, particularly 

those that drive differences between the laboratory strain N2 and the true wildtype 

CB4856, identifying a potential QTL between the strains on chromosome IV. 

In the final aim, I turn my attention from structure to function, examining the 

problem of monitoring many neurons in the head ganglion of C. elegans simultaneously 

using the GCaMP family of fluorescent calcium markers. By developing a segmentation, 

tracking, and data processing pipeline, I demonstrate that the tracking of the individual 

activity of many neurons simultaneously can be performed algorithmically without 

manual correction, decreasing the time invested per video by two orders of magnitude. I 

first illustrate and validate the algorithm using videos and manually-curated neural traces 

provided by Manuel Zimmer, for which an analysis was published in October 2015. I first 

show that our algorithm generates results of comparable accuracy and can reproduce 

much of the published results. I then demonstrate the ability to process a large number of 



 xvi 

videos quickly, using our own videos of a lightly anesthetized worm to illustrate our 

ability to collect neural recordings on the whole head of the worm. 

Taken together, this thesis illustrates the scientific power of high-throughput, 

computer vision based methods to explore new aspects of subtle phenotypes, including 

synaptic phenotypes that have previously proven resistant to these kinds of study. 

 

 

 



 

1 

 

CHAPTER 1 

INTRODUCTION 

 

 This thesis explores the use of image processing and computation, as applied to 

the high throughput imaging of C. elegans neural phenotypes, both structural and 

functional. A major challenge in the field is the development and exploitation of 

computational and high-throughput methods in order to study the nervous system of C. 

elegans in new, deeper ways. Here, we seek to advance the state of the art in this field by 

directly addressing three open problems. For candidate gene approaches, phenotypes are 

often evaluated qualitatively by eye, or quantitatively for large scale phenotypes, 

neglecting subtle phenotypes visible only high-power microscopy18. Similarly, genetic 

mapping with Quantitative Trait Loci (QTL) analysis is only done with phenotypes that 

can be quantified rapidly en masse19. Finally, whole ganglion calcium imaging is a 

burgeoning new topic in the field, but a stringent need for manual supervision of neuron 

tracking prevents the use of this technique for large sample size experiments3. This thesis 

intends to directly address these challenges; to motivate the development and application 

of the aims herein, this chapter provides an introduction to the relevant techniques, 

technologies, and questions, discussing the current state of the field as well as challenges 

in methodology and experimentation.   

1.1 C. elegans as a Model Organism 

 Caenorhabditis elegans (C. elegans) is a free-living, transparent nematode, about 

1mm in mature length. Organizationally, the body of the animal consists of a long, tough 

cuticle surrounding a fluid-filled pseudocoelom, alongside which reside the core tissues 

of the animal. It possesses musculature to enable movement by crawling, a pharynx and 
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grinder at the mouth to enable feeding on bacteria, an intestinal system, a nervous system 

consisting of exactly 302 neurons15, and a variety of other tissues. Notably, populations 

of C. elegans are in large part hermaphroditic and self-fertilizing, possessing a pair of 

gonads that generate both the sperm and ova necessarily to produce progeny, which are 

laid as eggs. A small percentage of the population is male, producing only sperm10. For 

the purposes of this document only hermaphroditic individuals are examined or 

discussed, although the male will be relevant for the purposes of genetics. C. elegans has 

four larval stages, referred to as L1 through L4, followed by an adult stage when they are 

reproductively mature. Under conditions of environmental stress and low food, L1 and 

L2 may also transition to an alternate dauer stage of development, a resilient and very 

long-lived state that can persist for months until conditions improve and the nematode 

may continue to L410. 

 As a model organism, C. elegans possesses a number of advantages that 

recommend it to the experimenter, tabulated in Table 1.1. 

 For neural studies specifically, the combination of optical transparency and 

stereotyped neuron development allows for advantageous imaging frameworks 

that cannot be achieved for other multicellular organisms. The consistent 

recurrence of the same neurons allows for the examination of neurons in different 

individuals that are known to have the same function, guaranteeing cells that are 

directly comparable. The optical transparency of the worm allows for the direct 

observation of fluorescent markers within neurons, both for structural and 

functional markers, without disturbing or damaging the animal10.  

 The combination of these two properties allows for repeated, high-throughput 

experimentation on the same neuron in a large number of different individuals, but the 

practical implementation of this kind of high-throughput experimental presents and 

experimental, and often computational, challenge. Much of this thesis is devoted to the 

automatic and accurate analysis of data gathered in this way. 
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 In the wild C. elegans dwells in the soil and in rotting fruit. The most common 

laboratory strain, the Bristol Strain N2, was collected by Sydney Brenner from the soil of 

Bristol, England, but a number of other variants—Wild Isolates—exist. Most of these 

were collected relatively recently, once it was clear that, due to laboratory adaptation, N2 

contained a number of significant genotypic and phenotypic differences from wild 

strains20. 

1.1.1 A Brief History of C. elegans 

 The use of C. elegans as a model organism was first proposed and popularized by 

Dr. Brenner in the late 1960s. Dr. Brenner, a molecular biologist and geneticist who 

would later go to win the 2002 Nobel Prize in Physiology or Medicine21-23, was interested 

in examining the relationship between genes and behavior. Considering the nervous 

Table 1.1: Experimental advantages to working with C. elegans 

Advantage Details 

Genetic Homology 

to Humans 
60-80% of human genes have a C. elegans ortholog6 

All three germ layers, most major tissues 

Some common neurotransmitters (dopamine, serotonin)9 

Ease of Culture Fast-growing; resilient to contamination; eats E. coli; can be 

cultivated on agar plates 

Ease of Genetic 

Manipulation 
Hermaphroditic and self-fertilization allows for consistent, 

isogenic lines 

Rare males allow for breeding between strains 

Rapid reproductive cycle: 3 days to reproductive maturity, 

300 eggs laid per cycle 

Easy uptake of RNAi, extrachromosomal DNA, etc. via 

feeding or microinjection10 

Optical 

Transparency 
Easy imaging of internal landmarks, such as neurons or 

fluorescent markers 

Stereotyped 

Development 
All 959 somatic cells have an unvarying, mapped lineage all 

the way back to the zygote, including the 302 neurons11-13. 

The connectome between these 302 neurons is well-

mapped15. 

Synapse formation is very consistent between isogenic 

individuals; synapses are over 75% reproducible16. 
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systems of larger animals to be too complex to readily study this connection, Dr. Brenner 

sought an organism that was small, easily manipulated genetically, and had a simple but 

discernable nervous system. C. elegans came to be the answer he chose10.  

 Over the next few decades, researchers set out to rigorously characterize the 

development and function of C. elegans using electron microscopy and fluorescent 

labeling to trace the cell lineage of each of the nematode’s somatic cells, finding that in 

the case of C. elegans, the fate of each individual cell is fully-encoded in the genome11-13. 

This examination let to the discovery that a number of cells in the L1 stage never made it 

to adulthood, dying without producing any daughter cells. The characterization of this 

process and the examination of C. elegans mutants that did not lose these cells led to key 

discoveries about cell division and apoptosis24, 25, and became the basis of Brenner’s 

Nobel Prize, shared with Howard Robert Horovitz and John Edward Sulston, who 

worked with him21-23. 

 Since then, the number of labs working in C. elegans has proliferated. It would be 

beyond the scope of this thesis to discuss in detail all of the developments that have 

originated or involved work in C. elegans. Here, we confine ourselves the brief 

observation that C. elegans played a key role in the discovery of RNA interference 

(RNAi)26-28 and has become one of the key platforms for the use of green fluorescent 

protein (GFP)29, 30 due to C. elegans’s optical transparency, both Nobel Prizes. C. elegans 

has also become one of the key research organisms in studying axonal growth31, synaptic 

trafficking, and synapse formation32, due to the presence of a large number of stereotyped 

axons and synaptic domains in the adult nematode.  

 Despite substantial progress, the programme laid out originally by Dr. Brenner 

remains only partially fulfilled—the full spectrum of C. elegans genetics and neural 

behavior is only partially mapped. The drive for high-throughput imaging and subtle trait 

quantification is thus driven by a need to expand the field of inquiry even farther, 
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exploring new aspects of the genotype-phenotype connection. It is this need that helps 

drive much of the motivation for Chapter 1 and 2. 

1.1.2 Genetic Manipulation in C. elegans 

 The genome of C. elegans contains 6 diploid chromosomes, including 5 pairs of 

autosomes and 1 pair of sex chromosomes, referred to as X. The sex-determination 

system is X0, with hermaphrodites having 2 copies of the sex chromosome and males 

having only one. Because of this, hermaphrodites will have solely hermaphroditic 

progeny, except for a few males resulting from X chromosome nondisjunction during 

meiosis, while the progeny of male-hermaphrodite matings will be 50% hermaphrodite, 

50% male. C. elegans populations thus have very few males in the long-term and are 

primarily self-fertilizing, though the exact male ratio differs depending on conditions and 

is generally higher in non-N2 strains10. 

 The self-fertilizing hermaphroditic nature of C. elegans plays a big role, with 

populations tending to become homozygous at all loci in the long-term. It is thus possible 

to get inbred strains just by moving one individual to a new plate and allowing it to found 

a population. This makes C. elegans genetics often much more straightforward than in 

other species. Appendix A describes the genetic nomenclature conventions in the C. 

elegans community and which are adhered to in this thesis33. These are unfortunately 

unique to the field. 

 This section is devoted to describing the generation of novel strains in C. elegans, 

in order to provide background for and help motivate Chapter 3, where the use of 

heterozygotes is used to circumvent the creation of hundreds of novel strains. Discussion 

of the topic here is relatively brief and tailored to this motivation, as relatively few new 

strains are generated in this thesis; Appendix B may be referred to for a much more 

complete explanation.  

Generating Novel Mutants 
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 The traditional, and most common method, of generating new strains of C. 

elegans is via forward genetics18. This consists of random mutagenesis, followed by 

identification of novel phenotypes and isolation of the mutation responsible. Finally, 

these genotypes are repeatedly mated with the original parent strain (usually N2), 

selecting for progeny with the desired phenotype, a process called outcrossing18.  

 While this approach to generating mutants is fruitful and provides mutants of use 

to C. elegans community as a whole, it is usually unhelpful for generating mutants in a 

specific gene of interest. If the exact mutant desired is not already available, a more 

targeted approach may be used, involving a zinc-finger nuclease or CRISPR-CAS934-37. 

Fluorescent Marker Insertion 

One of the most useful aspects of C. elegans for the experimenter is its optical 

transparency. This enables the visualization of fluorescently-labeled landmarks within the 

animal without needing to cut open or otherwise physically manipulate the animal. As 

such, the successful inclusion of genetically-encoded fluorescent markers is an important 

aspect of C. elegans genetic manipulation. As mentioned in Appendix A, C. elegans 

strains which have been genetically transformed can be labeled with an abbreviation such 

as “Ex” or “Is”—although other abbreviations, e.g. “IR” for introgression lines, exist. 

The use of “Ex” refers to the presence of an extrachromosomal array that has been 

introduced by the injection of foreign DNA into the gonads of a healthy hermaphrodite. 

The primary advantage of this approach to genetic transformation is its speed and 

efficacy, but the level of expression of the injected genes and co-injection markers is 

extremely variable, and even sibling worms from the same parent show substantially 

variable expression38-40. The use of the “Is” labeled indicates that the genetic 

transformation has been “integrated” into the genome. A number of techniques exist to do 

this, usually reliant on generating random breaks in the genome and relying on DNA 

repair to integrate foreign genes. Compared to the extrachromosomal strains, these 
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integrated strains carry a number of advantages, the most principle of which is stable 

expression, but care has to be taken about the possibility of mutations from the 

integration process. This can allow for much more reliable quantitative comparisons 

between individuals, and is the reason why integrated strains are used for much of the 

work in this thesis38, 41, 42.  

Combining Existing Strains when the Background Strain is the Same 

 A very common scenario facing the researcher is the need to hybridize specific 

existing loci into one new strain. In many cases, this can be done without resorting to 

gene-editing tools by exploiting the favorable interbreeding properties of C. elegans. In 

the simplest scenario, when the two genotypes are each confined to specific genetic loci 

against the same genetic background, the procedure is relatively straightforward and will 

be outlined below; the fundamental experimental techniques are the same as the more 

complex case. This assumes the two loci are on different chromosomes; two loci on the 

same chromosome will require chromosomal recombination rather than Mendelian 

genetics for mixing, requiring repeated matings and other complications43, 44. 

 First, the two strains are interbred, and F2 progeny that are homozygous for both 

of the parent genotypes isolated. The most general, worst-case protocol involves moving 

F2 individuals onto new agar plates, one individual per plate, to found new populations. 

Each new population may then be evaluated for the presence of one of the two genotypes, 

either by sequencing or, if possible, direct inspection of phenotype. With a probability 

25%, the population will show the desired genotype, meaning it must have had a 

homozygous parent and by homozygous itself. This population then has a 75% chance of 

containing at least some of the other genotype, and the other genotype may then be 

refined by repeating the same procedure. A variety of common tricks can shorten this 

procedure if the genotype has certain properties, or if a co-injection marker is used43, 44.   

Combining Existing Strains with Difference Backgrounds 
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 Another common scenario occurs when it is necessary to integrate a genotype at a 

specific locus into a different target genetic background. For the purposes of this thesis, 

this is particularly relevant for Aim 2, when considering the problem of performing a 

QTL analysis using a phenotype that requires a fluorescent marker to measure, which 

would require the integration of a fluorescent marker into a variety of different 

backgrounds. It is noteworthy that the downsides of this procedure, noted below, make it 

so that in many cases it is superior to repeat on the target background the original 

procedure that generated the genotype in the first place—for example, by just inserting 

the fluorescent marker as described previously.  In the case of genetic insertion of 

fluorescent markers for QTL purposes, however, this is inadmissible, as no such 

technique is reliable enough to ensure quantitative comparability between strains, given 

the potential for off-target insertions, uncertainty about copy number, and randomized 

insertion into the genome38. Thus, standard QTL analysis requires either using the 

procedure below for integrating the marker in each of many Recombinant Inbred Lines 

(RILs), or repeating the entire procedure for generating RILs each time a study requires a 

new fluorescent marker, a prohibitive downside. We save extensive discussion of RIL 

generation for Chapter 3, where we propose a procedure that avoids the need to generate 

all of these RILs. 

 Cursory thought reveals that a single mating is insufficient to perform the 

integration of a given gene loci into a new background, because one of the paternal 

chromosomes will always contain the original background of the gene loci being 

integrated. Once the mating has been performed, it becomes necessary to outcross the 

strain into the target background, while still maintaining the gene being integrated, a 

nontrivial task if the phenotype of the gene cannot be easily seen.  

 In the simplest case, where it is possible to observe the phenotype in the 

heterozygote, then outcrossing may be performed by repeatedly mating males of the 

target background into the strain, selecting for heterozygous progeny that contain gene. 
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This may be done until the background has probably been fully integrated (>7 matings), 

and then individuals may be picked onto individual plates and evaluated for 

homozygosity. In the other cases, when the heterozygous phenotype cannot be observed 

but the homozygote can, it is necessary to perform a longer protocol. The homozygotes 

can be found in the F2 generation after mating, and males of the target background can be 

used to mate with these. Because recombination can only potentially occur in the 

heterozygote, however, the number of necessary matings is unchanged. In the worst case, 

where even the homozygote cannot be easily phenotyped, it becomes further necessary to 

pick individuals onto their own plates and sequence some of progeny, as it is not possible 

to non-destructively sequence C. elegans individuals43, 44. 

 The reliance of this procedure on recombination introduces a number of 

downsides which should be discussed. A co-injection marker, for example, can no longer 

be used as a fully reliable proxy for the gene of interest, as the probability that it has 

become separated during recombination can no longer be neglected, and care must be 

taken to either sequence the strain regularly or not allow the population to bottleneck one 

individual. Perhaps more importantly, recombination occurs properly only among 

homologous regions of the chromosome. If the gene of interest is an insertion, then it 

cannot itself undergo recombination and is prone to causing errors in recombination in its 

immediately vicinity. Finally, of course, it can never be fully guaranteed, only 

probabilistically guaranteed, that the entire target background has truly been transferred, 

and any potential defects in the overall process lead to a requirement for more crossings 

to ensure success43, 44. 

1.1.3 Laboratory Mutations in C. elegans 

 The history of some of the most commonly used C. elegans strains, in particular 

N2, the Bristol Wildtype used as the laboratory standard, provides a fascinating foray into 

the potential effects of laboratory adaptation on the genotype and phenotype of a 
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commonly used model organism. The modern technique for long-term storage and 

preservation of C. elegans, freezing of starved freshly hatched L1s in liquid nitrogen, was 

only introduced in the late 1960s, giving plenty of time for lineages to diverge, both from 

each other and the wildtype20. While genetic drift may have played a role in introducing 

changes, the most interesting changes arise from laboratory adaptation, the quasi-natural 

selection of C. elegans strains for optimal propagation in the laboratory45. The question 

of exactly what changes have developed in C. elegans over its long stay in laboratory 

incubators, and whether subtle variations in neural phenotypes exist and can be detected 

by QTL analysis, serve as a major motivating factor for Aim II of this thesis. 

 A number of significant laboratory adaptations are now known to exist in N2 

relative to all known strains recently gathered from the wild, termed wild isolates20. The 

most significant of these are mutations in npr-1 and glb-5 that significantly diminish their 

activity. In wild isolates, the protein NPR-1 regulates the social feeding behavior of C. 

elegans, with decreased activity leading to increased aggregation of individuals into 

gregarious social clusters and adventurous foraging behavior, whereas increased activity 

leads to solitary feeding and careful exploitation of local resources. In N2, significantly 

increased NPR-1 activity leads to solitary individuals that are very reluctant to leave a 

local source of food45. This is almost certainly an adaptation to culturing on agar plates, 

 
Figure 1.1 A history of the divergence between the strains N2, LSJ1, LSJ2, and CC1. 

Figure adapted from McGrath, et al1. 
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where there is only ever one E. coli lawn as a source of food and worms are frequently 

picked for passaging—it is easier to pick solitary individuals rather than those aggregated 

in clumps, which has resulted in a form of accidental artificial selection. This effect is 

further enhanced by a decrease in the activity of GLB-5, a globin involved in oxygen 

sensation that in the wild isolates leads to a marked preference for the low oxygen 

environments (5-12%) of its natural habitats and social aggregation in the presence of 

high oxygen46. The behavioral and physiological impact of these two mutations is not 

limited to just what is stated here, and are profound enough that these two genes are 

repeatedly detected in QTL mappings of differences between N2 and other wild isolates. 

 It is vital to understand what exact differences exist between N2 and wild isolates, 

given the role N2 plays as the background strain for nearly every C. elegans study. At the 

very least, any loss of function mutants found in N2 relative to wild populations would 

lead to that particular loci being very difficult to detect using forward genetics. It was for 

this reason that a range of wild isolates were examined for differences in synaptic 

morphology in Chapter 3, leading to one of the motivations for performing a QTL 

analysis. 

1.1.4 Synaptogenesis in C. elegans 

In C. elegans, synapse formation happens en passant, with synapses budding off 

the axon as it passes by a neighboring neuron or muscle. Like all synapses, this is 

characterized by a presynaptic density, consisting of a distinct region of the membrane 

heavily populated by neurotransmitter-bearing vesicles. Unlike vertebrate synapses, there 

is no obvious postsynaptic density filled with ion channels and signal transducers15, 32. 

The classical synapse-labeling fluorescent marker is a fusion of the protein 

synaptobrevin (SNB-1), an integral membrane protein of synaptic vesicles, and GFP47, 

and is used, for instance, in the genotype wyIs9248, which we use in chapter 1 and 2 and 

will describe there. Much of what is known about synaptic assembly derives from mutant 

screens of C. elegans conducted using this marker, which identified a number of sets of 
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genes whose mutations are associated with unusual synaptic vesicle patterns32, 49-51. 

Notably, these studies were conducted by visual inspection of synaptic domains, the 

manual analog of what is advanced in Chapter 2, and the best understood aspects of 

synaptic formation and assembly derive from the gene families identified in these studies 

(sad, sam, syd, and syg) and relevant follow-up studies32. 

The least well-understood aspects of synapse formation deal with its regulation 

and coordination. It is believed that many of the components of the pre-synaptic density 

have at this point been identified, but it remains relatively mysterious why synapses form 

where they do, or what coordinate the many synaptic proteins together into a presynaptic 

density32. The genes involved here, particularly genes involved in regulation as part of a 

gene network, are likely much more difficult to find in a mutant screen, as the effects 

caused by their loss may cause only subtle effects on the ultimate synaptic phenotype. 

For example, the JNK/JKK kinase pathway, whose molecular role is only beginning to be 

understood, has only a subtle effect on synaptic phenotype52 (Section 2.4).  

The ability to detect gene-gene relationships in putative synaptic regulatory genes 

would thus be invaluable, even as a bare epistatic relationship such as established chapter 

2, which would enable further follow-up studies. Further, by searching wild populations 

for synaptic-affecting genes, it is likely possible to turn up subtle genes that would not be 

noticed in a mutant screen due to low penetration, or too subtle an effect to be detected in 

a single mutant animal. Thus, a synapse-focused QTL, such as conducted in Chapter 3, 

might prove invaluable in discovering new, potentially crucial synapse-influencing genes. 

1.2 Microfluidics for the Manipulation of C. elegans 

 The development of microfluidics, the class of techniques for manipulating fluid 

flow on a micron-level scale, has been spurred in the past two decades both by technical 

developments and the realization of its value for the imaging and manipulation of small 

biological organisms, whether these be mammalian cells or C. elegans53-57. This is done 
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by engineering the length scale of microfluidic devices to correspond to the organism 

being studied, aided by the predictable, laminar flow induced by these low Reynold’s 

number channels. In addition to providing for manipulation of organisms, these devices 

allow for the rapid and precise insertion and removal of chemical agents and other forms 

of experimental manipulation55, 58-60. In biology, the silicon MEMS once used have now 

been almost entirely supplanted by devices made of polydimethylsiloxane (PDMS), a soft 

silicone polymer. While not as robust and reusable, PDMS devices are easy to fabricate 

using a silicon master, are much more biocompatible, are permeable to oxygen and 

carbon dioxide, and are soft enough to enable to actuation of internal valves merely by 

the application of pressure to the right locations54, 61. These properties are extremely 

valuable for biological applications. We discuss here briefly the fabrication and use of 

these microfluidic devices, without going into extensive detail on the fairly standard 

protocols involved. 

1.2.1 Device Fabrication and Preparation 

 The first step in the construction of a PDMS is the design of the device itself, 

typically in a computer-assisted design (CAD) software such as AutoCAD. Microfluidic 

device design is an entire field, one that will not be substantively explored here, though 

many of the fundamental ideas are implicitly explored in Figure 1.3. Once designed, a 

silicon negative mold (or master) of the device is produced, most commonly with 

photolithography, and is then coated with dimethylchlorosilane or a similar compound 

(“silanization”), which prevents too much adhesion of PDMS to the master. The height of 

the features on this master varies by device design, but is typically in the range of tens of 

microns for C. elegans devices53. 

 While highly important, the design and fabrication of the silicon master is a one-

time affair, barring trial and error for the refinement of the design. Far more common is 

the fabrication of the devices themselves, which can be done over and over on the same 

silicon master, which is often large enough to mold as many as two dozen devices at 
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once. The PDMS pre-polymer is mixed with cross-linker, stirring vigorously, and the gas 

bubbles thus formed are eliminated by placing the resulting mixture into a vacuum 

chamber until it is observed that the bubbles are gone. This mixture is then poured 

directly onto the silicon master within a large petri dish and allowed to spread out evenly, 

and this is then baked in a 70 °C for roughly four hours53, 61. It is common for devices 

used in the Lu Lab, particularly the devices discussed in the thesis, to use two different 

ratios of pre-polymer to cross-linker: 20:1 for a small layer poured directly onto the 

master, suitable for valve actuation, and 10:1 for a large layer poured above that, for 

structural support and manipulation. A short baking of 20 minutes is carried out between 

these pours. Depending on device design and the needs of the user, there are many more 

elaborate and involved protocols, but they will not be discussed here. 

 Once the baking is complete, the PDMS layer, usually about 0.5 cm thick, is 

carefully peeled off the silicon master. This layer is then sliced into individual devices 

and syringe needles of the proper size are used to punch small holes into the device in 

pre-planned locations, providing access to the microfluidic channels for the later insertion 

of needles and tubing for the insertion and extraction of liquid, pressurization of valves, 

and so forth. Along with a clean, thin glass slide, 0.16-0.19 mm thick, this hole-punched 

device is cleaned, then bathed in an oxygen plasma for a short period of time, ~20 s. This 

creates oxygen radicals on the both the surface of the glass and PDMS, and the side of the 

device with the microfluidic channels is then adhered to the glass, forming permanent 

covalent bonds The grooves in the PDMS formed by the silicon master now become 

closed channels bounded on one side with glass and accessible via the previously 

punched holes53, 61. 

1.2.2 Operation and Design of a Single-Layer C. elegans Imaging Device 

 Figure 1.3 illustrates the microfluidic device used throughout Aims I and II of this 

thesis, designed by Adriana San-Miguel62. Pressure control is provided by an off chip 

valve box that allows for the toggling of individual pressure sources via a computer 
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interface. Fluid flow is driven by a relatively low pressure (3-10 PSI) pumped into vials 

of 0.01% Triton-X in M9 buffer, one of which is used for flush control and the other for 

the in-flow of C. elegans individuals; and flow control is provided by separate solenoid 

pinch valves. Flow within the device is controlled by pneumatically drive valve chambers 

adjacent to the flow channel, such that pressurization of the chamber (at ~35 PSI) 

restricts flow. By placing the entire device setup above an inverted microscope, C. 

elegans individuals may be imaged by flowing the animals in, restraining them in the 

imaging region by closing the valves in front and behind, then releasing them again by 

opening the valve in front. A separate channel on the side allows for the flow of chilled 4 

°C 50/50 glycerol/H2O through the device, which temporarily immobilizes individuals in 

the imaging channel for imaging without recourse to paralytic drugs. This device may be 

operated manually, by toggling various arrangements of the valves through a custom 

GUI, or even, with a sufficiently well-synchronized worm population, on full automatic, 

as discussed in previous work 63, 64. Unfortunately, because of the thickness of the 

channel and of the worm body itself, features within the worm body can only be reliably 

clearly imaged on an epifluorescent microscope when the proper side of the worm is 

 

Figure 1.2 PDMS device fabrication in summary, omitting some details. Drawings 

are not to scale. 
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pressed against the glass slide through which imaging occurs. To achieve this, the end of 

the imaging channel, near the imaging valve, narrows substantially to force the animal 

against the glass. There is unfortunately no currently known way to control whether the 

dorsal or ventral side of the worm faces the glass (though it will be either dorsal or 

ventral), or even to ensure that the proper end of the worm (head or tail) enters the exact 

imaging region. Since whether or not this occurs is roughly uniformly random, only 25% 

 
Figure 1.3 PDMS device operation and design. Part A shows the general setup, where 

a computer controlled valve box is used to regulate the pressure inputs and valves for 

the device, controlling flow to and from the device. Part B shows the device of the 

channels on the microfluidic chip itself. Part C shows the primary modes of operation 

of the device. First, an individual worm is loaded into the imaging region in the 

center. Flow is briefly stopped to enable imaging, and then the worm is flushed out 

and ejected. Note that this operation mode neglects the two exit valves, which may 

optionally be used to sort which outlet a given worm leaves by, in case sorting is 

needed. Shifting between these modes may be done manually on the computer or 

fully-automatically, by detecting and imaging worms without manual input. 
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of the worms that enter the device are suitable for automatic imaging—this is, however, 

no issue, as the number of worms that may be fed into the device can be enormous, and 

worms may be discarded automatically. This illustrates the power of the microfluidic 

approach, although this loss of images becomes relevant if the population being imaged is 

limited in number, as occurs in Chapter 3. It should also be noted that even with manual 

imaging, 50% of the worms would have the wrong side of the worm facing the objective. 

1.3 Microfluidics for Neural Imaging in C. elegans 

 Much of the text in this section was adapted from “Trends in High-throughput 

and Function Neuroimaging in C. elegans” in WIREs Systems Biology and Medicine, a 

review paper I co-authored and which is currently in review. 

The combination of C. elegans’s natural advantages as a model organism and the 

advantages of microfluidics as an experimental platform has spurred the development of 

a number of microfluidic platforms intended to examine neural structure and activity 

under a variety of different conditions53, 63, 65-68. This takes advantage of the most 

valuable experimental aspects of C. elegans, exploiting its optical transparency to gather 

information on neural structure and function on a large scale. However, to do this, it is 

necessary to overcome a number of challenges. For instance, in order to obtain detailed 

quantitative information, it is necessary to immobilize worms effectively, collect images 

efficiently and rapidly, and robustly process the images obtained. With images or video 

in hand it becomes necessary to accurately track and characterize what may be a large 

number of neurons and neural features. 

For high resolution neural imaging, one important technical challenge is the 

immobilization of individual animals during imaging. Even for very short exposures and 

bright markers, slight movements in the animal can drastically decrease image quality. 

While paralytic drugs are traditionally used to limit this, these drugs often have unknown 

effects on the phenotypes observed, and may damage the animals, limiting further 
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experimentation and experimental throughput. On microfluidic devices, however, the use 

of these drugs can be avoided through techniques such as cooling, physical restriction, 

carbon dioxide, and gelation64, 69-71. 

Here, I discuss both structural and functional imaging of neurons in C. elegans, 

particularly as it pertains to the aims of this thesis. The first involves the detailed, high-

throughput imaging of neural structures, usually taking only a static view of the worm, 

enabling new types of genetic screens and gene association studies. The latter requires 

dynamic imaging of the worm over time, using a marker for neural activity such as the 

fluorescent calcium marker GCaMP (which represents a fusion of GFP and 

calmodulin)72, 73. It is worth noting that both of these take advantage of the unique 

characteristics of C. elegans. 

1.3.1 High-resolution, High-throughput Imaging of Neural Structure in C. elegans 

 Static imaging, particularly of fluorescent markers, is the workhorse of many 

developmental studies. However, many of the most powerful techniques for mapping the 

genome and performing mutant screens require the accurate, large-scale quantitative 

characterization of the phenotype under study, something that was previously only done 

on phenotypes that could be rapidly graded by eye. Recently developed techniques in 

high-throughput and automated imaging have allowed the extension of these kinds of 

studies to subtle and dim fluorescent features, including neural structures, such as 

synapses, that can only be evaluated under high magnification63, 64. 

Traditional genetic approaches require the examination of a large number of 

individual animals, either searching a population of mutagenized individuals for a change 

in phenotype, or screening a diverse array of strains for the source of a difference 

phenotype, such as is done in QTL18. While a number of techniques have been developed 

for the rapid screening of fluorescent neural markers, thus far only microfluidics has 

proven capable of doing so while also possessing the resolution to examine fine structural 

features such as synapses63, 64.  
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A key innovation here is the use of automation; by using a microfluidic device 

such as the one introduced earlier, these microfluidic devices expedite the examination 

and retrieval of worms by drastically simplifying the imaging process. To achieve total 

automation, image processing algorithms can automatically examine the phenotype of 

interest and decide whether a worm is mutant, or simply whether or not a worm should be 

imaged. Examples of success with this approach in performing mutant screens, both from 

our lab and others, include the identification of synaptic and metabolic mutants by 

variants of a single-channel confinement device74 and the identification of chemotaxis 

mutants with a device capable of generating controlled gradients75. Success with mapping 

the genome for the source of a particular phenotype, then, is a natural continuation of this 

work, and the subject of Aim II of this thesis. 

1.3.2 Functional Imaging of C. elegans Neural Activity with GCaMP 

The optical transparency of C. elegans enables the observation of neural activity 

without damaging the worm, via the use of the calcium marker GCaMP. While calcium 

levels within the neuron are only an indirect marker of neural activity, and questions 

remain about the effect of using a fluorescent marker that itself sequesters calcium, the 

use of GCaMP has been an invaluable tool in the understanding of simple circuits and 

stereotypical neural relationships in C. elegans, gradually displacing the use of FRET-

based markers like cameleon for applications that require high dynamic range and do not 

require millisecond temporal resolution5, 8, 14, 17, 76. This enables the optical measurement 

of neural activity in vivo for extremely long periods of time, in a context where 

electrophysiology is both challenging and very damaging to the animal77. Here, too, 

microfluidics has a role to play, enabling the high-precision measurement of calcium 

activity with greatly lowered use of muscle paralytic drugs such as tetramisole, simply by 

the use of the microfluidic confinement methods already discussed—though the use of 

cooling or carbon dioxide is inappropriate in this case69, 70. While there are, of course, 

downsides to examining the animal under confined conditions rather than e.g. freely-
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roaming, there are substantial upsides, including better controlled imaging conditions, the 

ability to use higher magnifications, and the ability to deliver reliable, controlled stimuli. 

Traditionally, limitations on the spatiotemporal resolution of microscopy 

techniques have prevented observation of more than a few neurons at a time at a 

sufficiently high time resolution (~0.1 s or less)78, prompting unavoidable dissatisfaction 

with the limitations of examining C. elegans neural processing a few neurons at a time. In 

recent years, with the advent of a new generation of microscopy techniques, including 

spinning disc confocal79 and light-field microscopy4, 8, a number of research groups have 

turned to the idea of “Whole Brain” (or “Pan-neuronal”) imaging, where as many neurons 

as possible are imaged at once, either under rest or under deliberate stimulus4, 5, 8, 14, 17, 80, 

81. This provides simultaneous information about a large number of neurons at once, for 

instance enabling the direct correspondence of neuronal activity with stimulus. A spate of 

new research in this direction promises new advances in the field, but recent papers have 

proven to be primarily proof-of-concept, providing data on only 4 or 5 worms at a time 

(Table 4.1). One of the main bottlenecks on throughput here, the need to reliably track 

and analyze hundreds of neurons at a time, can be effectively resolved by the judicious 

use of segmentation, tracking, and post-processing techniques, as demonstrated in 

Chapter 4 of this thesis. 

1.4 Thesis Outline 

 Many of the challenges in the field of C. elegans neuroscience research can be 

addressed by the development and exploitation of computational and high-throughput 

methods. This thesis seeks to advance the state of the art in this field by directly 

addressing these open problems, demonstrate new experimental methodologies enabled 

by effective image processing, both directly through new forms of accurate image 

analysis, and indirectly through new experimental methodologies that could not 

previously be attempted. For the analysis of subtle differences in phenotype, it is 
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necessary to develop accurate and robust methods for quantifying large amounts of high-

throughput imaging data. For the genetic mapping of features that can only be visualized 

under a high-power microscope, it is necessary to develop both experimental and 

computational techniques for the rapid assessments of large numbers of different strains. 

Finally, for the analysis of functional calcium traces in large numbers of neurons 

simultaneously, automated methods must be developed to replace manual or semi-manual 

data curation. 

 The chapters of this thesis are organized around the idea of examining both 

structural and functional imaging in C. elegans, with Aims I and II pertaining to 

structural, single-image analysis and Aim III pertaining to the analysis of dynamic 

functional information from global brain videos taken of calcium signals in the C. 

elegans head ganglion. In Aim I (Chapter 2), previously developed algorithms for the 

automated segmentation and imaging of the synapses of a C. elegans motor were 

completely redesigned for application to a new, more difficult problem, in particular the 

imaging of very dim markers, and the robust automated imaging of animals even when 

the age distribution of the population may be substantially broader than usual. This has 

direct relevance to Aim II (Chapter 3), where these new algorithms are used to enable 

QTL genetic mapping on the synaptic morphology of the DA9 motor neuron, which was 

observed to differ between the laboratory wildtype N2 and the wild isolate CB4856.  The 

motivation here is two-fold, demonstrating both the first application of high-throughput 

microfluidic imaging to genetic mapping, and the ability of focused algorithm 

development to take on an otherwise technically infeasible project. In Aim III (Chapter 

4), we turn our attention from structure to function, demonstrating the ability to 

accurately track and analyze calcium traces from hundreds of neurons at a time over a 

long period of time. We show that with this automated technique we can substantively 

replicate the conclusions of a previous study carried out primarily by manual correction 

and annotation in a fraction of analysis time, and extend it to dozens of additional 
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animals, rather than the 4-5 that have been reported per study so far. Finally, we 

summarize the contributions of this thesis, drawing conclusions and providing 

suggestions for future work following up the work herein (Chapter 5). 

 All experiments were carried out and devices fabricated either by the author or 

under his supervision, unless explicitly indicated otherwise in the text. However, for 

clarity, the image data in Chapter 2 of D. melanogaster embryos and T cells was taken by 

Dr. Thomas Levario and Dr. Ariel Kniss-James of the Lu Lab. Except for the last set of 

data explicitly taken under the author’s supervision, the video data used in Chapter 4 for 

analysis was generously provided by the laboratory of Manuel Zimmer at the Research 

Institute of Molecular Pathology (IMP) in Vienna, Austria from Kato et al5. The majority 

of strains used were generated by the laboratories of Kang Shen at Stanford University, 

Patrick McGrath at the Georgia Institute of Technology, Eric Andersen at Northwestern 

University, and Cori Bargmann at Rockefeller University. All members of the Lu Lab, 

however, owe an implicit debt to previous members of the lab and the research 

community as a whole for microfluidic chip designs, pre-fabricated silicon masters, 

established microscopy setups, legacy computer code, and so forth. The image processing 

and data analysis techniques will be frequently borrowed from the field of computer 

vision and machine learning, but this thesis does not intend to break new ground in the 

field of fundamental algorithm development. It instead intends to break new ground in 

the accurate and novel application of previously unused techniques to neural phenotypes 

in C. elegans. 
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CHAPTER 2 

ROBUST IMAGE SEGMENTATION AND ANALYSIS FOR NOISY 

AND DIM FLUORESCENT IMAGING 

 

 Much of the work in this chapter is in preparation for publication as Zhao et al., 

“Rapid, Simple, and Versatile Quantitative Phenotyping of Fluorescent Reporters 

Enabled by Relative Difference Filtering and Clustering.”. 

2.1 Motivation, Background and Overview 

 One of the key goals of studying the model organism C. elegans has been the 

elucidation of the complex and multi-faceted relationship between genotype and 

phenotype. Phenotype is a broad term, used to describe everything from nuances of 

behavior to levels of protein expression; thus, understanding the relationship between the 

outward qualities of an organism and its encoding genotype is one of the most 

complicated tasks one can undertake. Fortunately, the geneticist’s toolbox is filled with 

methodologies for investigating the relationship between the two, and the application of 

these to C. elegans has yielded multiple Nobel prizes21-23, 27-29, as well as the first 

understanding of a number of key genes and processing, including apoptosis during 

development12, 22, 24, 25, the Notch signaling pathway82 and numerous participants in 

Ras/Map-kinase signaling83. 

 However, using traditional methods, many of the most powerful such techniques 

cannot be practicably applied to subtle features or features that require high magnification 

to observe, in particular those that require fluorescent markers for labeling. The reasons 

here are two-fold: on the one hand, many techniques, such as forward genetics via 

mutagenesis18, 43 and QTL mapping19, require examination of hundreds or thousands of 

individual animals to saturate, an endeavor that cannot traditionally achieved for 
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phenotypes that require inspection under high magnification, as this would require the 

inspection of hundreds of individuals on agar pads within a very short time window. On 

the other hand, accurate phenotyping with quantitative precision is also a necessity for 

mapping techniques like QTL19, and can enhance the usefulness of candidate genetics, 

examining mutant phenotypes with more precision than is possible with standard 

observation. 

 To address these deficiencies, the Lu Lab developed a robust and efficient 

microfluidic device intended precisely to allow the rapid imaging of high-magnification 

phenotypes in C. elegans63, 64, 74. By designing a valve box that allows for computer 

control of each of the individual valves on the device, and incorporating useful 

experimental features such as a separate cooling channel for the immobilization of 

animals, it enabled rapid, automated imaging of animals64. By automatically segmenting 

and measuring the properties of fluorescently-labeled synapses, this further sorting of 

mutagenized animals based on synaptic phenotype63, 64, and was successfully used to 

conduct a mutant screen on synaptic phenotypes.  

 Support vector machines (SVMs)84 on a large number of synaptic features were 

used to segment synapses before quantification. To very briefly summarize the 

procedure, a wide variety of different filters were applied to every image, and the values 

given by the filter for every pixel, were used to train a SVM to identify synapses based on 

filter values. Positive (synaptic pixels) were selected by a human operator selecting the 

region of each synapse, with a hand-tuned filtered thresholding procedure used to 

segment pixels out of this region. Negative pixels were selected randomly from the 

regions not selected64. 

 Further improvements made later drastically simplified the fabrication process of 

the microfluidic device, introduced additional SVM classifiers for identifying the region 

of the worm being imaged, and reduced the number of images taken of inappropriate 

sections of the worm62. 



 25 

 Despite these successes, it became clear that the system in its current form had a 

number of deficiencies, impacting both its robustness and applicability to forms of 

traditional genetics where careful examination of potentially different strains is 

necessary. The SVM classifiers the existing methodology relied on were highly sensitive 

to the exact conditions of the training set used to train the algorithm, and performed 

poorly under new conditions and for new fluorescent markers. Further, the 

unapproachability of the technique for external labs made it a liability in expanding its 

use as a tool beyond just the Lu Lab. Finally, even with a properly constructed training 

set, the pixel-based SVM had difficulty distinguishing between fluorescently-labeled 

synapses and auto-fluorescent fat droplets whenever the two objects were about equally 

intense, as occurs frequently when the fluorescent marker is dim, rather than heavily 

over-expressed as the markers used in the original experiments were. 

 With all of this in mind, this portion of the thesis aimed to address these 

deficiencies. First, we developed a new robust and untrained image segmentation 

technique for identifying relevant fluorescent dots in an image in the presence of 

confounding, similar-looking objects. Not only does this technique successfully separate 

fat droplets from synapses in this use-case, it is more appropriate for situations with little 

data available for training, including situations where the experimental conditions or 

condition of the animals may change frequently, and can even be generalized beyond this 

particular application in C. elegans. As such, it is more proper for accurate quantification 

of large numbers of different strains, such as in the QTL analysis in Chapter 3, which 

does not have the luxury of sorting out everything that looks substantially different from 

the training set as “mutant”. To fully characterize the process in a variety of situations, 

and as fruitful use of data available to our lab, we demonstrate this segmentation 

technique on more than just C. elegans, extending it to both Drosophila melanogaster (D. 

melanogaster) embryos and human T cells in a microfluidic device, using images 

acquired by Dr. Thomas J. Levario and Dr. Ariel Kniss-James, formerly of this lab.  
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Some of the D. melanogaster embryo work is published as Levario et al., “An integrated 

platform for large-scale data collection and precise perturbation of live Drosophila 

embryos”7. 

 Secondly, in order to demonstrate the usefulness of high-throughput techniques 

for subtle phenotypes in candidate approach genetics, and for quantitative genetics, we 

expand the range of quantitative features gathered, study necessary corrections for 

accuracy, and use new post-processing methods from the field of convex optimization to 

mitigate sparse noise in the dataset. We demonstrate the validity and accuracy of the 

processing pipeline by examining known synaptic mutants, demonstrating results 

consistent with manual observation as well as quantitatively evaluating a novel epistasis 

between two genetic loci. 

2.2 Robust Segmentation of Fluorescent Phenotypes with Relative Difference Filter 

and Clustering 

 The first goal was to develop a segmentation method for fluorescently labeled 

synapses that was independent of the pixel-based SVM segmentation method previously-

used. As discussed, this was motivated by the observation that this method rarely 

generalizes beyond a particular experimental setup and marker, necessitating manual 

curation of at least some images before it can be used, feature selection relevant to the 

problem at hand, as well as a parameter search to find optimal values for parameters. This 

raises questions about the ability of the segmentation to accurately label synapses in 

mutant animals, and the implementation of the full segmentation workflow can be 

daunting. Finally, and crucially, it was found that this segmentation method dealt poorly 

with the presence of confounding objects like fat droplets when the synapses were 

labeled with a dim marker, unless heuristic features were developed to detect the 

relatively straight and compact synaptic domain for a given arrangement of synapses.  
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 To address this, Z-stacks were taken of the synaptic domain of the neuron DA9 in 

the genotype wyIs92 [Pmig-13::snb-1::yfp; Podr-1::rfp], obtained from the Kang Shen 

lab48. Here, SNB-1::YFP is a fusion between synaptobrevin-1, a protein consistently 

found in the pre-synaptic density of C. elegans neurons, and the yellow fluorescent 

marker YFP; Podr-1::RFP is an extremely bright co-injection marker localized to 

neurons in the head. The promoter for mig-13 ensures that the synaptic fluorescence is 

expressed only in the VA and DA subset of motor neurons. DA9 was chosen because it 

has a consistent synaptic domain always found along the dorsal side of the tail, and also 

because it is a very common neuron used in this kind of study, including in previous 

work from this lab48, 52, 62-64, 74. 
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Figure 2.1 Representative images of the synaptic domain of the motor neuron DA9, 

in the dorsal nerve cord. The cell body lies in the ventral nerve cord, sending an axon 

in the direction of the tail that immediately curve backs around and extends towards 

the head on the dorsal, as picture here. These are images of the genotype wyIs92 on 

an inverted fluorescent microscope at 40x magnification; synapses were 

fluorescently labeled with Pmig-13:snb-1::yfp. Horizontal length of the images is 

about 206 µm, and these images have been contrast adjusted for visibility. Note the 

visible fat droplets in both images. 

 

20 µm 
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 In addition, images were acquired from others in the Lu Fluidics Lab in order to 

validate the success of the procedure on very different imaging conditions, and also to 

solve vexing image processing questions relevant to the lab. In the first case, time-

sequence images were taken Dr. Levario of D. melanogaster blastulas with nuclei labeled 

by histone-GFP and imaged at 40x in a microfluidic device by a confocal microscope. 

From an image-processing standpoint, the objective was to successfully segment only the 

outer ring of nuclei along the dorsal-ventral axis, ignoring the nuclei in the middle that 

are frequently visible. Embryos were imaged with either single or double-photon 

imaging; here, one example of each is presented. The results of extensive further 

experimentation by Dr. Levario using this algorithm are published7. These results are 

briefly presented in Section 2.2.2 as proof of the algorithm’s accuracy, but are not 

presented in the results section of this chapter, as it was not part of the original goal of the 

thesis. 

 In the second case, time-series images were taken by Dr. Kniss-James of Jurkat T 

cells labeled with a cystolic calcium indicator in a microfluidic array of cell traps on an 

inverted fluorescent microscope85. These were segmented to find single-loaded T cells, 

ignoring unusual loading and T cells suspended out of the cell traps, where quantification 

is unreliable. Detailed methodology may be found in Appendix C.1. 

 Four goals were set for the new segmentation procedure: 

1. Accuracy: Above all, of course, it is necessary that any segmentation developed 

be accurate, successfully identifying synapses while ignoring confounds and 

producing a plausible segmentation of the pixels within a given synapse 

2. Robustness: The procedure should generalize well, beyond a particular set of 

imaging conditions or a given marker 

3. Few Parameters; No Training: The procedure should be relatively 

straightforward to use on new sets of images, with no explicit training. It is 
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unavoidable that a few parameters require manual selection or heuristics, but this 

should ideally be as straightforward as possible. 

4.  Resilience to Confounding Objects: One of the main motivations of developing 

this was, of course, the problems that confounding fat droplets posed to the 

previous segmentation method. While this is technically an aspect of accuracy, 

this was an important consideration in design. 

2.2.1 Algorithm Design 

With the previous in mind, we set out to design an algorithm suitable for not just 

this set of images, but for the general class of problem. As such, many of the examples in 

this section come not just from C. elegans, but also from the embryos of D. melanogaster 

and from arrays of T cells, imaged by Thomas Levario and Ariel Kniss-James, also from 

the Lu Lab. As will be illustrated, the algorithm was able to provide useful results for this 

situations as well as the DA9 synaptic domain. 

In many fluorescently-labeled biological images, objects of interest can be 

characterized as regions of intensity brighter than the local surroundings, organized into 

clear spatial patterns. Generally speaking, images often contain sparse and Gaussian 

noise, uneven illumination, as well as extraneous fluorescent objects that are not of 

interest. These kinds of noise are pervasive in biological contexts, resulting from optical 

blur, light-distorting aspects of live sample, stochasticity of photon arrival in low-lighting 

conditions, and so on—biological samples are rarely pristine. In low-light applications, 

such as fluorescent imaging, sparse noise often presents a particular issue, with the 

magnitude of the sparse noise sometimes comparable to the magnitude of the signal. In 

addition, even when considerable care is taken to only fluorescently label objects of 

interest, background autofluorescence can easily conceal or obscure objects of interest, or 

even present spurious objects that fool image classification algorithms—for instance, 

when small pieces of debris contaminate the image, or when unrelated structures 
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resemble the object of interest. It is readily apparent why these kinds of noise, 

 
Figure 2.2 Direct thresholding often fails to segment biological images, even after 

local background removal. Part A shows two example images of fluorescent objects 

against a dark background. These are nuclei in a D. melanogaster embryo and T 

cells in a microfluidic array, imaged by Dr. Thomas Levario and Dr. Ariel Kniss as 

discussed in the main text. Part B shows the result of thresholding the embryo 

directly with 3 different thresholds. Part 3 shows the result of thresholding the same 

embryo after subtracting local background intensity. Neither thresholding is 

satisfactory. 
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particularly uneven illumination, would confound thresholding-based techniques, as can 

be easily demonstrated in a representative example. Even subtracting the local average is 

often insufficient; under uneven illumination, both the objects and background are 

dimmer, and compensating for only the dimmer background still leaves dimmer objects 

that do not threshold well in combination with the brighter regions (Fig. 2.2 and 2.3). 

We thus targeted these particular sources of noise. The general approach is 

outlined in Fig. 1C. Briefly, we first pass the image through a standard 3x3 median filter 

to lower the amount of sparse noise in the image, removing the sharp single-pixel 

oscillations in intensity that are common in low-light imaging. We also preemptively zero 

out regions of the image with intensity lower than a certain percentage of the maximum; 

this both reduces sparse noise and alleviates numerical issues in the next step. Uneven 

illumination is then dealt with by passing the image through a relative difference filter, a 

pixel-level filter defined as: 

𝐼𝑛 =
𝐼 − 𝜇50

𝜇50
 (0 𝑖𝑓 𝜇50 = 0)        (1) 

 
Figure 2.3 No consistent optimal direct thresholds or ratio of the Otsu threshold can 

be chosen that effectively segments the synapses of DA9. The thresholds shown in 

these boxplots were chosen manually for a random subset of the synapse images used 

in this chapter. 
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where 𝐼𝑛 is the new pixel value, 𝐼 is the original pixel value, and 𝜇50 is the average value 

of all pixels within a 50x50 region. This effectively replaces each pixel with its relative 

difference from the local average. Applying a threshold to the filtered image then 

effectively selects for pixels that are unusually bright compared to the local background. 

This is of course mathematically identical to 
𝐼

𝜇50
− 1, normalizing by the local 

background, but we prefer this version as it is clearer in meaning.  

While this given procedure reveals objects more clearly than simple methods, it is 

also prone to generating anomalous objects in an image, often in dim regions of the 

image. Most of these objects can be removed by detecting and removing collections of 

pixels that are either too small or have too small a solidity (i.e. are too irregularly 

shaped). Fig. 2.5b-c illustrates this; initial filtering produces many incorrect objects in the 

center of these images, which are mostly eliminated by removing small and irregular 

 
Figure 2.4 Summary of the general approach used here for robust segmentation 
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objects. In many cases, however, these extraneous objects are not just processing 

artifacts, but represent actual objects in the images—special yolk nuclei (Fig. 2.5a-c), or 

fat droplets in the gut of C. elegans that resemble synapses (Fig. 2.1)—that are 

nonetheless not objects of interest. To alleviate this problem, we recognize that objects of 

interest that are typically found inside biological structures are by nature well-structured 

to allow for specific functions to occur; for example, cells in developing embryos are 

organized into highly stereotyped patterns. These are often the objects that confound pre-

packaged algorithms or generic thresholding methods. However, taking advantage of the 

spatial patterns present in most biological images, we can exploit the structure present in 

biological images to efficiently segregate the objects into groups by clustering based on 

their locations in the image. Once this is done, we may select for only the relevant 

clusters by applying sorting criteria based on expected properties of the objects of 

interest. While performing this selection does require some custom algorithm 

development, the choice can often be quite easy; for instance, in the case of the D. 

Melanogaster embryos presented in next section, the nuclei of interest are usually 

arranged in a circle at the edge of the embryo. 

The given procedure is flexible and easily adjusted; for example, as shown later, 

k-means clustering, which clusters objects to minimize the spread of individual clusters,86 

is chosen for the cell traps. In the other examples, where the objects of interest exhibit a 

uniform density and extraneous objects represent outliers, density-based clustering, using 

the algorithm DBSCAN87, is used instead. It is of course also possible to use other 

clustering algorithms to suit the application, such as G-Means88, though they were not 

used here. While it is desirable to avoid excessive amounts of calibration, these kinds of 

changes are often straightforward. This particular choice can be made in a principled 

manner—use DBSCAN when outlier removal is desired or the objects of interest are 

clearly more structured, and k-means when the exact location of the clusters is the more 

important factor. 
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2.2.2 Algorithm Accuracy over Three Experimental Conditions 

 In this section I test the general implementation of this procedure on three 

different experimental conditions. In the first two cases the examples come from outside 

C. elegans, and were imaged by others in the Lu Fluidics Lab. In the third case, images 

were taken by the author. Some specific details of algorithm implementation are provided 

in each case; full details are provided in Appendix C.2. 

Segmenting the Histone-GFP-Labeled Nuclei in Developing Drosophila Embryos 

Imaging D. melanogaster embryos is a challenge that often introduces uneven 

illumination and other types of imaging noise, but by using genetically-encoded 

fluorescently-tagged histones, we can obtain images relatively free of extraneous objects, 

making this system a good test of the algorithm under relatively clean conditions (Fig. 

2.5a). Indeed, in the case of single-photon imaged embryos, no clustering was needed, as 

the number of extraneous nuclei was minimal. Images were filtered as described and 

thresholded with a single value chosen by manual inspection of a small subset of the 

images in each video, making sure to include both the beginning and end, due to 

photobleaching. The values chosen were 0.8 in the case of the single-photon images and 

0.4 in the multiphoton images. In the multiphoton case, the center of embryo was 

identified by evaluating the centroid of the largest area after a simple threshold of the 

image set at 10% of the maximum intensity. 

 Fig. 2.5a-d shows two representative embryo images, taken from one single-

photon and one double-photon imaged embryo. The filtering process is effective enough 

that the single-photon images are segmented accurately as is, but the additional artifacts 

(i.e. yolk nuclei) seen in the multiphoton images make it necessary to perform clustering. 

In this case, this is most efficiently done by estimating the centroid of the embryo and 

clustering based on the distance of objects from this centroid. To cluster, we use 

DBSCAN, since the objects of interest clearly differ in density from the anomalous 
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objects, and because DBSCAN is also capable of excluding outliers, unlike k-means. The 

DBSCAN parameter used was 5 objects in the neighborhood of each point. 

Once clusters are obtained, it is still likely that some clusters will be found 

containing anomalous objects. These can usually be excluded by excluding clusters with 

a small number of objects—in this case of nuclei in stages 5 and beyond of developing 

fly embryos, less than 10. After clustering, the segmentation of nuclei is accurate enough 

for analysis. We evaluated the average length of the detected nuclei at every time point, 

as well as their average distance from the centroid, in both embryos imaged with single-

photon excitation and those imaged with multiphoton excitation. The accuracy of 

segmentation in the single-photon excitation images was sufficient that clustering was not 

used for these images.  As is apparent if overlaid with embryo staging done by an expert, 

the information obtained from the nuclear segmentation clearly shows transitions in the 

embryo between stages, and can be used for the automated staging of embryos (Fig. 2.5e-

f). 

Quantifying the Effects of Perturbing D. melanogaster Embryos with Anoxia 

Figures and data here are from Levario et al., “An integrated platform for large-

scale data collection and precise perturbation of live Drosophila embryos”7 or Levario et 

al. “Statistical comparison of dynamic phenotypes enabled by microfluidics and 

computer vision” (In review). I developed the image segmentation and some of the 

analysis used herein, helped edit the manuscripts, and was credit as second author, but 

was uninvolved in data collection. Only relevant results are presented here; the interested 

reader is referred to the published manuscripts for further details. 

The progression of D. melanogaster embryonic development is a topic of key 

interest in development biology. Using the segmentation procedure described, the nuclear 

areas of embryos imaged in a novel on-chip platform for developmental imaging were 

quantified, enabling the mitotic progression of the embryos to be tracked over stage 4 

through 8 of development, using the information to accurately time the entry of the 
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embryos into each mitotic cycle (Fig. 2.5e-f). In addition, by pulsing the embryos with 10 

minutes of humidified nitrogen gas during nuclear cycle 13, it was possible to precisely 

quantify the effects of anoxia on embryonic development, showing that these anoxic 

pulses substantially delay later development, but without obvious permanent damage to 

the embryos (Fig. 2.6 and 2.7)7. 
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Figure 2.5 Segmentation and analysis of dividing nuclei in two D. melanogaster 

embryos, imaged with two different methodologies. Parts A-D illustrate the stages of 

the segmentation algorithm as applied to these two fluorescently-labeled embryos. 

While some nuclei are lost. The segmentation obtained is more than good enough to 

measure average properties of the nuclei. In Part E and F, dips in measurements of 

mean nuclear length and distance from the centroid correspond exactly to mitotic 

cycles in stage IV of embryonic development, and the combination of the two help 

mark the occurrence of later stages of development. In the Parts G and H, stages V-X 

of embryonic development can be effectively marked instead. 
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Figure 2.6 Anoxia induced delay in Stage IV D. melanogaster embryonic 

development. a) Average ± S.E.M. nuclear area trajectory for (i) 35 embryos grown in 

normoxia (ii) 14 embryos experiencing 10 minutes of anoxia during nuclear cycle 13. 

Black triangle indicates telophase to interphase 14 transition. b)  Average ± S.D. 

durations for nuclear cycles 10-13 (stage 4), and stage 5 for these same embryos. 

Nuclear cycles 10–12 and stage 5 durations are not significant (NS) while nuclear 

cycle 13 is statistically different from control (****p < 0.0001. T-test). Figure and 

caption adapted from Levario et al., with permission7. 
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Figure 2.7 Recovery from anoxia-induced developmental arrest. a) Frames from a 

Histone-GFP expressing embryo that recovers from anoxia-induced arrest. Top to 

bottom: nuclear cycle 12, cycle 13, cycle 13 arrest in metaphase, cycle 13 anaphase-

telophase transition, stage 5, and ventral furrow formation. b) Frames from a 

Histone-GFP expressing embryo that does not recover from anoxia-induced arrest. 

Top to bottom: nuclear cycle 12, nuclear cycle 13, nuclear cycle 13 arrest in 

metaphase, nuclear cycle 13 anaphase-telophase transition (white triangles indicate 

fused daughter nuclei), nuclear delamination (final two frames). c) The timing of 

milestones. Milestones include nuclear division (ND) 10, 11, 12, and 13, and ventral 

furrow formation (VFF). Embryos 1–14 are grown entirely in normoxia, and 

embryos 15–27 are exposed to brief anoxia in nuclear cycle. The timing of nuclear 

division 13, and ventral furrow formation are statically different from control 

(****p < 0.0001. T-test). Figure and caption adapted from Levario et al., with 

permission7. 
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Segmenting and Tracking Fluorescent Cells in Microfluidic Arrays 

To evaluate the effectiveness of the algorithm in a second, very different 

experimental system, we imaged Jurkat T cells labeled with the cytosolic calcium 

indicator, Fluo-3 AM, and loaded in a previously characterized microfluidic cell-trap 

array(6, 34). Images were acquired every 6 s for a total of 60 minutes while cells were 

stimulated with an oscillatory treatment of H2O2. Here, the organization of the system 

imposed by the microfluidic device provides a natural structure for clustering to segment 

the cells, but the primary challenge lies in identifying T cells that have been properly 

 
Figure 2.8 Segmentation and clustering for the T cell Microfluidic Array. Part A 

shows the original image. Part B shows the resultant binary image after filtering. A 

large number of cells outside of the traps still show up in the image, boxed in red. Part 

C illustrates how the majority of these improperly loaded cells can be removed with a 

clustering technique. Part D shows the resultant T cell calcium traces, unsorted and 

relative to the average intensity of all cells. 
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loaded, rather than T cells which are merely suspended in the channel or trapped in other 

parts of the device. Indeed, these out-of-focus T cells are sometimes trapped in patterned 

rows parallel to the T cells of interest, presenting a particular challenge for automatic 

analysis (Fig. 2.3).  To avoid inaccurate segmentation, manual identification was 

previously used to identify only cells of interest, a procedure that took a substantial 

increase in time and was prone to inconsistencies in cell identification from person to 

person. This system provides a more stringent test of the use of clustering to remove 

extraneous objects, and to resist changes in intensity due to photobleaching, which was 

prominent in the data.  

 As before, we use the filtering to rapidly detect cells against the dark background 

(Fig. 2.4). In this case, we are not interesting in removing outliers with DBSCAN, 

because the anomalous objects often have a density similar to the objects of interest. By 

using k-means clustering on the vertical coordinate of the object centroid, we can 

effectively sort the objects into rows, choosing a clustering parameter of 18. Since there 

are 11 rows in the device, this accommodates both the expected properly loaded cells and 

the expected clusters of extraneous objects. 

Removal of anomalous objects can then be done effectively by estimating the 

average spacing of the rows and removing the clusters that are too close to the 

neighboring rows. Specifically, this was done by merging clusters within 5 pixels of each 

other vertically, identifying the row spacing using a 2D-fourier transform, and discarding 

clusters that failed to be near a multiple of this spacing from the top row. This achieves a 

precision and recall of 90% and 95%, respectively (Fig. 2.11a). Note that the clustering 

parameter used for the data contained herein was chosen without reference to this charts, 

which show that an even better parameter can be chosen with a parameter scan. 

From the segmented image for each frame, we can then calculate the calcium 

intensity for each cell throughout the dynamic experiment. In Fig. 2.8, we show the 

individual fluorescent calcium traces.  
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Characterizing the Synaptic Domain of the C. elegans Neuron DA9 

Finally, we illustrate the use of the algorithm for the analysis of large sample-size, 

subtle features in C. elegans, where accurate quantification is especially important, since 

this is the application the algorithm was originally developed for.  C. elegans individuals 

with a marker labeling the synapses of the tail neuron DA9 were imaged in a microfluidic 

channel and their synaptic morphology evaluated with the filtering and clustering 

algorithm. Here, the images are obtained under low-light (SNB-1∷YFP is a dim reporter) 

high magnification conditions, highly prone to sparse noise; in addition, the images 

contain a large number of autofluorescent fat droplets that misleadingly resemble 

synapses. Despite this, while various types of noise in the image make direct thresholding 

inadequate for detecting synapses, the median and relative difference filtering process can 

readily identify synapses within the image (Fig. 2.9).  

 
Figure 2.9 Segmentation of a DA9 synaptic domain with the filtering and clustering 

algorithm. For each part of the figure, the right side is a zoomed-in inset of the figure on 

the left side. After initial filtering, we see in part B that some extraneous objects still 

remain, but these are eliminated by clustering, cluster selection, and merger. 
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Here, there is little need to filter out small or misshapen objects, and synapses 

themselves are often very small. Thus, no size or shape-based object removal is applied. 

Filtered synaptic images contain a number of extraneous objects, however, and it is still 

necessary to distinguish the actual synaptic domain from the often very similar-appearing 

autofluorescence (e.g. from fat droplets within the intestine) in the samples. As before 

with Drosophila embryos, this is done with DBSCAN (neighborhood parameter 4) and 

cluster selection; clusters are selected by their linearity and lack of vertical self-overlap. 

DBSCAN is chosen here rather than K-means because of the clear difference in density 

between the synapses and other objects, and because of DBSCAN’s ability to discard 

outliers. It is also necessary to detect clusters that are arrayed in nearly a line, for those 

occasions when missing synapses in the middle cause a synaptic domain to be separated 

into more than one group. 

We find that clustering and selection is sufficient to identify the synaptic domain 

for analysis; the clustering step has a precision of 89% and a recall of 98% (not including 

images discarded for poor image quality—wrong neuron or synaptic domain out of 

focus). 

In order to characterize the synaptic morphologies detected, a set of 29 features 

were measured (Table 2.1). Features were chosen so as to summarize the properties of the 

synapses or of the domain as a whole, without specifically targeting known differences 

between the strains. Of note, these features are different from those chosen previously for 

this kind of study.  

2.2.3 Algorithm Speed and Parameter Robustness 
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For many applications, including the processing of large numbers of images, it is 

desirable that image characterization be done as a fast as possible, ideally on the order of 

a few seconds or less, and that it be robust to a wide variety of possible parameter choice. 

It is unavoidable that some parameters (i.e. the threshold used after filtering) must be 

changed for each experimental condition. Most of these may be rapidly estimated with 

visual testing of one or two representative images—the filtering parameters can be 

rapidly determined in this manner. For other parameters, such as the clustering parameter, 

that cannot be determined so readily, it is desirable for ease of use that the accuracy of the 

post-filtering procedure be relatively insensitive to changes in these parameters; a good 

Table 2.1 Features measured from the synaptic domain of C. elegans 

Synaptic Feature (Over Synapses in 

Image) 

Category Mean SD/Mean 

Area (Pixels in Synapse) Size Feature #: 1 14 

Area/(Area Calculated from F6 and F7) 

Shape 

2 15 

Perimeter/(Perimeter from F6 and F7) 3 16 

Eccentricity of Approximate Ellipse 4 17 

Diameter of Circle with Same Area 

Size 

5 18 

Major Axis Length of Approximate 

Ellipse 

6 19 

Minor Axis Length of Approximate 

Ellipse 

7 20 

Mean Intensity of Pixels in Synapse 

(arb) 

Intensity 

8 21 

SD/Mean Intensity of Pixels in Synapse 

(arb) 

9 22 

Perimeters (Pixels along edge of 

synapse) 

10 23 

Max Intensity in Synapse 11 24 

Min Intensity in Synapse 12 25 

Total Synaptic Intensity (F1*F8) 13 26 

 

Additional Synaptic Domain Features    

Synapse Number 

Misc. 

Feature #: 

27 

 

Mean Distance between Synapses 

(pixels) 

28  

Synaptic Domain Length (pixels) 29  
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algorithm should work adequately regardless of parameter choice, so that a reasonable 

choice will likely work for all applications. Beyond ease of application, having 

insensitive parameters also provides reassurance that the results obtained are not an 

artifact of the exact parameters chosen.   

The filtering and clustering procedure fulfills these criteria. Even on a relatively 

low-end processor (a 1.6 GHz Intel Core i7 Q720M), both the filtering procedure and 

clustering take at most two seconds, and the overall algorithm for all our experimental 

conditions take at most a few seconds on the same platform, even taking into account 

feature measurement, etc. (Fig. 2.10). 

Table 2.2 shows the set of calibration parameters that are used for each of the 

experimental conditions discussed in this chapter, including those which they have in 

common and those they do not (primarily in the cluster selection stage). Varying the non-

Table 2.2: Manually calibrated parameters in the three algorithm implementations 

Parameters Shared by All Description 

Blackout Threshold % of maximal intensity below which pixels are set to 

0 

Relative Difference 

Threshold 

Areas with relative difference greater than this are 

considered objects 

Solidity Criterion Objects with a solidity less than this are rejected 

Clustering Criterion For K-means, the expected number of clusters, for 

DBSCAN, the number of objects expected in a 

neighborhood 

T cell Array Parameters Description 

Merge Criterion Clusters closer than this in vertical difference are 

merged 

Spacing Criterion Used to identify clusters in-between two rows of cells 

Synapses Parameters Description 

Merge Criterion Clusters closer than this in horizontal distance and 

that meet the criteria are merged 

 Total # Calibrated Parameters 

Nuclei (Confocal) 3 

Nuclei (Multiphoton) 4 

T cell 6 

Synapses 5 
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filtering parameters over a wide range has relatively little influence on the accuracy of 

post-filtering clustering (Fig. 2.11), with little change in the precision and recall for both 

examples over a reasonable parameter range. The recall of the cell trap algorithm is more 

 
Figure 2.11 Precision and Recall versus choice of clustering parameter for (a) the T cell 

microfluidic array segmentation and (b) the synaptic domain segmentation. Both 

segmentations are reasonably stable within the reasonable set of parameter choices (11-

25 for the cell trap segmentation and 2-8 for the synapse segmentation). Details of 

accuracy evaluation can be found in Appendix C.3.1. 

 

 

 
Figure 2.10 Processing time per image using the filtering and clustering algorithm, 

divided into steps. No variation of the algorithm takes more than a few seconds, or 

more than a second on a desktop processor. Often, the long step is the heuristic 

selection of clusters.  
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sensitive, but we note that the number of clusters input into K-Means should be 

somewhat the number of rows (about 11), to accommodate both the expected clusters and 

clusters of extraneous objects, so the value is still stable within the reasonable range of 

parameters. 

2.3 Detection of Epistasis in Previously Studied Synaptic Mutants 

In order to demonstrate the ability of this pipeline to answer interesting questions 

about specific phenotypes, and to illustrate its applicability to candidate gene approaches, 

we took a focused look at two synaptic mutants in the wyIs92 genotype already described 

(with the SNB-1∷YFP marker in the neuron DA9)48. We examined Day 1 adult 

individuals from four different strains, the base strain with just the marker, two single 

mutant strains with either the gain-of-function unc-104 (wy673) or the loss-of-function 

jkk-1 (km2), and a double mutant strain with both mutations). These strains were 

generated by and received from the Kang Shen Lab at Stanford University52. 

2.3.1 Experimental Methodology 

Worms were cultured on nematode growth medium (NGM) plates seeded with 

OP50 Escherichia coli bacteria according to standard methods at 20°C 

As described in the introduction, C. elegans imaging and sorting is done within 

the single-layer sorting device. Fluid-suspended worms are pressure driven through the 

inlet into the imaging area, where pneumatic valves restrict worms for imaging. Then, 

worms are sorted into one of two exits.  A cooling channel is used to flow a solution of 

50% glycerol cooled to ~ 4°C, preventing worms from moving during fine imaging. 

Valve control is done with custom software and an automated system of valve 

control, again as previously described. Fluid cooling is done with a custom-built peltier 

and peristaltic pump assembly63. Imaging was done at 40x on a Leica DMI3000B and 

Leica DM4599 inverted scopes, with a Hamamatsu C9100-13 EM CCD Camera. 
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By gently centrifuging the animals after removal from the plate and removing the 

supernatant, and also raising the inlet pressure on the device from 3 to 5 PSI, it was 

possible to cause adult animals to appear much more consistently in the imaging region 

on loading. To compensate for the greater density of animals and greater inlet pressure, 

valve pressure was raised to from 35±5 PSI to ~40±5 PSI to prevent animals escaping 

(the range on PSI values is due to variance in the stiffness of the device resulting from 

additional crosslinking during long-term storage), and the timing on the automated 

control steps was modified to enable continued automated imaging. 

2.3.2 Additional Changes to the Imaging and Quantification Pipeline 

 In order to improve the efficiency and efficacy of the quantification pipeline a 

number of methodological changes were introduced. The most important changes were 

made to choices of features and the post-processing of the feature data.  

The most important innovations were in the feature data and its post-processing. 

A small set of basic features relating to the size, shape, and intensity of the synapse were 

devised, chosen to reveal as much as possible about potential changes in synapse 

formation. Except for a few full-synaptic-domain features, these were calculated per 

worm as a mean over all detected synapses. Crucially, however, after substantial trial and 

 
Figure 2.12 Illustration of the differences in the synaptic domain between the wildtype 

and mutant strains involved in this study. 
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error, the variability of each feature (the standard deviation divided by the mean) was 

also included as a feature, in order to capture differences between the synapses as well as 

global properties. The standard deviation itself was not used, as it was found to have a 

very high correlation with the mean. 

Subsequent to this feature extraction, a number of outliers were observed, despite 

the strains in this case not being mutagenized populations. In the mutant screens 

previously conducted by the lab, these had probably been sorted as mutants and then 

failed to show penetrance of the trait to the next generations. In this case, however, these 

individuals added substantial additional variance to the data, and were sorted out by a 

common outlier removal criterion; that is, individuals were sorted out of the dataset if in 

any individual feature they fell outside the range (25 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 − 1.5 ∗

𝐼𝑄𝑅, 75 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 + 1.5 ∗ 𝐼𝑄𝑅), where 𝐼𝑄𝑅 is the interquartile range. 

2.3.3 Results 

The purpose of the study is to compare the wildtype strain with the mutants, 

demonstrating that the results of this algorithmic analysis are consistent with previous 

manual characterization. By conducting a detailed, higher-sample size analysis, we find 

that we can in addition draw biologically important conclusions that are only feasible due 

to the quantitative nature of the analysis. Previous qualitative observations by the Shen 

Lab have noted that both the unc-104 gain of function and jkk-1 mutants substantively 

reduce the intensity and size of the synapses in the neuron DA9, while the double mutant 

appears to show a combination of the two phenotypes (Fig. 2.13 and 2.14)52. 

When analyzed with the image processing pipeline, all three mutant strains show 

clear differences from the wildtype (Fig. 2.15a-c). By examining that features that show 

the most prominent differences, it is clear that unc-104 greatly decreases synaptic size 

and intensity, while jkk-1 reduces the variance of synaptic size, while exerting a much 

milder effect on synaptic intensity (Fig. 2.15a a-b). This is consistent with previous 

manual characterization of the strains, which indicates that both mutant strains possess 
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Figure 2.13 Representative images of DA9 synaptic domains from the wildtype, jkk-

1, unc-104, and double mutant genotypes. Images have been contrast adjusted for 

visibility. 

20 µm 
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dimmer and smaller synapses. Moreover, jkk-1 shows a loss of the brightest synapses in 

the domain, which is apparent from the different size and variance and can be shown 

explicitly with additional post-hoc analysis (Fig. 2.16). While this phenotype had been 

suspected qualitatively, this is the first clear demonstration of the fact, and would not 

have been initially noticed without the variability features I introduced in Section 2.3.  

Previously, the double mutant unc-104;jkk-1 has been observed to be dimmer and 

smaller than either single mutant. While Fig. 2.15c is suggestive of this, this difference is 

only evidently significant in jkk-1 (Fig. 2.15d-e). Indeed, a comparison between the 

strains reveals that unc-104;jkk-1 is very similar to unc-104, far more similar than jkk-1 is 

to the wildtype. This shows that unc-104 is epistatic to jkk-1. As a further, more detailed 

study of these epistatic effects, the summed effect of the two single mutants on the  

(𝑢𝑛𝑐104; 𝑗𝑘𝑘1𝑛 − WT 𝑛)        (3) 

The results are shown in Fig. 2.15f. It is apparent that the intensity of fluorescence 

in the synapses in the double mutant is far lower than would be expected without 

epistasis, whereas the physical size of the synapses in the double mutant shows little 

epistasis. Details of the estimation of statistical significance can be found in Appendix 

C.3.2. 

The clear epistatic effect of unc-104 (wy673) on jkk-1 (km2) has not been 

previously characterized, due primarily to a lack of detailed quantitative measurements in 

hand-curated data, but is clearly indicated in a quantitative analysis such as done here.  

Further, within this quantitative analysis, it is clear that this epistatic effect is most 

pronounced on the concentration of the marker-labeled SNB-1::YFP within the synapses, 

while having little effect on the size of the synapses.  Previous work indicates that both 

UNC-104 and JKK-1 play a role in the trafficking of synaptic material into and out of 

synapses52, but this epistatic effect may illustrate to the poorly understood functions of 

jkk-1, perhaps indicating a separate mechanism for regulating the amount of synaptic 
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material within the synapse.  As a control, we further compared unc-104 (wy673) to three  

 
Figure 2.14 Comparisons of synaptic features between the mutant strains show expected 

effects and epistasis. Plots here show the relative difference between strains. The grey 

bars show the percent difference (latter minus former) for a given feature, while the dark 

black curve shows the corresponding significance level (two-tailed Welch’s t-test). The 

horizontal dotted line indicates the significance level after the Bonferroni correction. 

Features are sorted from highest significance level to lowest. Colored bars illustrate 

features of interest, as indicated in the Legend. (a-c) show that the mutant strains are 

distinguishable from wildtype, with the phenotypes expected. (d-e) shows that the double 

mutant is highly similar to unc-104, far more than would be expected given the effect of 

jkk-1 in (b). unc-104 is thus epistatic to jkk-1. (f) illustrates this by comparing the double 

mutant with the mathematical sum of the differences in jkk-1 and unc-104. The actual 

double mutant has much higher values in intensity measures than would be expected 

from a linear combination of differences. The sample sizes are 34 (WT), 35 (unc-104), 61 

(jkk-1),70 (unc-104;jkk-1). 
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additional gain-of-function mutations in unc-104 (wy798, wy865, and wy873). While 

some subtle differences were noted, the strains appeared similar to unc-104 (wy673) (Fig. 

2.16).  

  

 
Figure 2.15 jkk-1 loses large synapses relative to other strains. Skewness is a measure 

of the left-right balance of the histogram of values. jkk-1 is significantly less biased 

towards larger synapses than the other strains. 
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Figure 2.16 Comparison of the wy798, wy865, and wy873 gain of function alleles of 

unc-104 with the wy673 used thus far in this chapter. Except for two features in 

wy873, these strains are statistically indistinguishable from wy673. Since these are still 

different alleles, it’s not too surprising that wy873 is slightly different. 



 56 

2.4 Discussion and Conclusions 

 In this chapter of the thesis I developed a new robust and untrained image 

segmentation technique, specialized for identifying relevant fluorescent dots in an image 

in the presence of confounding, similar-looking objects, and use it to demonstrate the first 

application of our high-throughput imaging technique to this kind of candidate genetic 

approach. 

 The algorithm was targeted towards the deficiencies of the previous SVM-based 

image segmentation pipeline, including difficulty separating fat droplets from synapses 

under high exposure conditions, overfitting for individual experimental conditions, and 

complexity of implementation.  Thus, it is appropriate for situations where the 

experimental conditions or condition of the animals change frequently, and was 

successfully generalized to applications beyond C. elegans. It is thus a much more 

suitable approach for the quantification of large numbers of different strains, which will 

be directly useful for the QTL analysis in Chapter 3. We demonstrate this segmentation 

technique on more than just C. elegans, extending it to both Drosophila melanogaster (D. 

melanogaster) embryos and human T cells in a microfluidic device, and extracted 

biologically valuable data in all three cases. 

2.4.1 Limitations and Considerations 

 While demonstrably fruitful, it is not likely that the image processing pipeline as 

outlined is optimal. While the accuracy of the segmentation and clustering is clearly more 

than sufficient for the given application, it is somewhat below that of the trained SVM 

method, sacrificing some accuracy for easier implementation and better generalization 

between strains and conditions—in particular the segmentation is vulnerable to 

inaccurately lumping multiple synapses together as one synapse. While some different 

segmentation techniques were examined during initial testing, no systematic evaluation 

of all possibilities was carried out; the emphasis was on obtaining one that was accurate 

enough suited the desired criteria, not necessarily the best one. In the future, if exacting 



 57 

accuracy is required, such a systematic study may be carried, but, as I have shown, the 

current approach is more than sufficient to demonstrate results in several biological 

systems. 

 With regards to broad generalization of the segmentation and clustering approach 

to different model systems, the biggest drawback is the reliance on heuristic expert 

knowledge to select the final, correct clusters. There is unfortunately no way to produce a 

simple cluster selection technique to all possible arrangements of fluorescent objects and 

confounds, and the user is forced to produce their own technique for a given situation—

e.g. clustering by distance from the center for D. melanogaster embryos or by row 

distance for the cell trap arrays. One possibility for future investigation is to train a 

machine learning algorithm to detect correct clusters rather than the original images, a 

problem that should be considerably easier to solve. This, however, removes some of the 

key upsides of performing segmentation and quantification in this manner. 

2.4.2 Implications for Candidate and Quantitative Genetics 

 The emphasis on robustness to experimental conditions, particular high exposure 

and dim marker conditions arose out of more than just a desire to improve the algorithm. 

The application of this high-throughput imaging approach to candidate genetics and 

quantitative genomics, requires the accurate segmentation of relevant phenotypes in as 

many conditions as possible, including mutant conditions. This is the reason it was 

considered necessary to re-examine the features used to characterize the synaptic 

domains, and to include features such as variability—although the choices made are of 

course specific to this particular phenotype—and to perform a layer of outlier detection. 

 The culmination of this effort produces feature data that is precise and accurate 

enough to verify qualitative observations of synaptic domains, and to produce a 

biologically plausible account of epistasis between two different synaptic proteins. This 

serves as a crucial demonstration that high-throughput phenotyping can be just as valid in 
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for a candidate approach as in mutant screening, and can be relied upon to measure subtle 

features in a phenotype as precise as synaptic domains. 

 This reassurance is necessary to carry the technique forward beyond 

characterization of mutants into the realm of genetic mapping and QTL analysis, where 

exact quantitative accuracy is necessary. Further, the applicability of the segmentation 

approach to dim markers confounded by objects such as fat droplets is of critical 

importance to a study that relies on the use of heterozygotes, as Chapter 3 of this thesis 

does. 
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CHAPTER 3 

HIGH-THROUGHPUT IMAGING AND QTL MAPPING FOR THE 

IDENTIFICATION OF SUBTLE SYNAPTIC MORPHOLOGY-

AFFECTING LOCI 

 

3.1 Motivation, Overview and Background 

 In this chapter, we give a new dimension to the high-throughput phenotyping 

methods developed in Chapter 2, seeking to take it beyond the mutant screens and 

phenotypic studies where it has already been applied, into the realm of quantitative 

genetics—powerful, sample-size dependent techniques such as linkage mapping89, QTL 

analysis19, and genome wide association studies90. C. elegans was the first multicellular 

organism to have its genome completely sequenced, enabling techniques first developed 

for single-celled organisms to in principle be applied to identify the genetic loci that 

influence key phenotypes91. However, the application of techniques like QTL analysis to 

C. elegans has been constrained by the reliance of the method on obtaining large volumes 

of quantitative phenotype data, in particular on a large number of different RILs. Because 

of the difficulties inherent in adapting existing RILs to the use of new genetic markers, 

and the burdensome task of generating a new set of RILs for a given problem, the use of 

QTL has thus far been restricted to phenotypes that can be observed readily and 

quantitatively by eye, without reliance on additional genetic manipulation or genetically-

encoded markers—for instance number of progeny, pharyngeal pumping, lifespan92-95 

and so forth96. This restriction limits the reach of what is otherwise a fruitful technique 

for discovering genome-wide and unsuspected genetic loci for a given phenotype. It is 

this restriction that we address in this chapter of the thesis, applying the techniques of 

QTL loci to fluorescently-labeled synapses, a subtle and genetically-encoded phenotype 
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whose genetic origins remain only partially explored, but where understanding is of 

critical importance to some of the most common neurological disorders, such as autism 

spectrum disorder or schizophrenia97-101. 

We open this chapter with a brief background on RILs and QTL analysis. 

3.1.1 Recombinant Inbred Line (RIL) Generation 

 Speaking most generally, a Recombination Inbred Line is a strain that represents 

what is essentially a hybridization of two different pure-breed lines, strains that have been 

bred to themselves so extensively that they are isogenic and homozygous at all loci102. At 

its most basic level, by taking two such strains, mating them to each other, and purifying 

the resulting genetic recombination events, it is possible to make a new inbred line that is 

the combination of the two parent strains. The concept of inbred lines and RILs was first 

developed in mice103, but has only recently been extended to C. elegans, despite the 

genetic and mating problems that make C. elegans ideal for genetic manipulation, e.g. 

easy breeding and naturally “inbred” lines104, 105.  

 A number of different techniques exist for generating RILs. The fastest and most 

straightforward involves mating the two parent strains and producing as many F2 

progeny as possible, followed by stabilizing homozygous loci by picking individual 

progeny and allowing extended self-propagation. While relatively convenient—but still 

labor and time-intensive—this method of generating RILs produces a relatively low level 

of mixing between the two parent genotypes, since a single mating event provides only 

one chance at recombination. This produces RILs that are individually of relatively little 

statistical value in genetic mapping—each individual strain is on average only capable of 

localizing a given phenotype trait to a very large region of the chromosome, and mapping 

any individual phenotype in detail requires either luck or examining a prodigious number 

of strains102. 
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Figure 3.1 Recombinant Inbred Line (RIL) generation (left) and Near Isogenic Line 

(NIL) generation (right). For RIL generation, after intercrossing, lines may be 

purified by picking individual worms and allowing self-mating for a large number 

of generations (7+). For NIL generation, selecting for a given genetic region may be 

done by picking individual progeny and screening a sample their progeny for 

genetic markers flanking the desired region. The final NIL homozygote may be 

selected for by individual worms for which all the progeny sampled have the 

desired genetic markers. Much of the relevant techniques involved are discussed in 

Appendix B. 
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 Consequently, the most useful modern RIL strains are generated by a so-called 

advanced intercross, where the F2 progeny and subsequent generations are mated to each 

other an extensive number of times, in order to generate new recombination events and 

merge together varying combinations of already existing recombination events102, 106. 

This enables the final RILs generated to contain highly mixed, nearly random mixtures of 

the two parent genotypes, greatly increasing the mapping power of each strain imaged. In 

order to efficiently sequence the RILs generated without requiring whole-genome 

sequence for every strain, single nucleotide polymorphisms (SNPs) between the two 

parents are identified and used as “markers”—not to be confused with fluorescent 

markers—to indicate which parent a given locus in a strain originated from. These SNPs 

can be readily identified in each strain without resorting to whole-genome sequencing102. 

A number of different schemes exist for maximizing the effectiveness of the 

subsequent intercrosses, including circular mating, inbreeding avoidance, or random 

assortment, but in most cases maintaining a large population of different intermediate 

strains is much more important than adhering to any particular scheme106. 

 One of the major methodological hurdle to QTL analysis that this chapter 

addresses is the time, resources, and manpower that goes into constructing a new set of 

RILs, a necessity if the phenotype being examined requires a marker not already present 

in an existing set of community RILs. Constructing a set of RILs is an endeavor that 

requires extensive planning, careful repeated mating, and the simultaneous maintenance 

of dozens or hundreds of strains102. It is for this reason that the use of genetically-encoded 

tools—such as fluorescent markets—to study particular traits in RILs is rare, as this 

requires either the successful uniform integration of the genetically-encoded modification 

into a large number of different strains—something beyond the reach of even many of the 

most advanced genetic manipulation tools38, or the laborious recreation of a new set of 

RILs from scratch, in which the consistency of the exogenous fluorescent marker cannot 

be assured due to the number of recombination events. Because of this, the use of 
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fluorescent markers to label useful phenotypic features in RIL strains is nearly 

nonexistent, despite the tremendous advantages the use of RILs provides—something this 

chapter intends to change.  

3.1.2 Quantitative Trait Loci (QTL) Mapping 

 Of course, the ultimate purpose of having a large set of RILs is to enable 

quantitative genetic mapping, the use of statistical and associative techniques to map 

phenotypic traits to specific regions of the genome. One of the most powerful such 

methods is referred to as Quantitative Trait Loci (QTL) Analysis, or QTL mapping, 

where quantitative phenotypic measurements on a large number of RILs are combined 

with genotypic data to statistically infer the genetic loci driving variation in the given 

phenotype19, 104. With methods like composite interval mapping and sufficient sample 

size, it is sometime even possible to infer the influence of more than one loci107, 108. 

General Idea 

Broadly speaking, a quantitative trait locus is a region of the genome that is 

associated with a particular phenotype; that is, differences in that region of the genome 

can cause changes in the value of particular phenotypic trait either directly or combined 

with changes in some other region of the genome. Given measurements taken on 

populations with variation on some parts of their genome, QTLs can be found by 

examining the statistical association of each individual loci with changes in the 

phenotype. QTL analysis techniques, generally speaking, take as inputs phenotypic 

measurements on a wide variety of different populations with known genotypes, and 

produce as an output an estimate of the how likely it is that each locus in the genotype 

affects the given trait19. 

Very roughly speaking, the key idea is that if variation A of a given loci is more 

frequently found in individuals with a higher value in a given trait, while variation B is 

more frequently found in individuals with a lower value, then this given locus has a 

chance of being a QTL that affects this particular trait.  
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Limitations and Requirements 

While this is a very crude formulation, it immediately illuminates some key 

properties of QTL analysis: QTL analysis can only search for QTLs within the restricted 

genotypic space represented by the variation that exists in the populations that have been 

studied. It does not matter if variation C at a given locus changes the phenotype if 

variation C is not present in the study, or if there is no other variation to compare it to. At 

the same time, not all the variation that could be studied might be interesting for a given 

study—if the study is intended to find QTLs that affect the size of synapses in a particular 

neuron, variations in loci that cause the neuron to fail to develop entirely are non-

germane. To perform a QTL analysis on the entire genome, then, it is thus critical to have 

as much relevant variation as possible at as many loci as possible, while excluding 

variation that is likely to be irrelevant. 

It is also clear that cross-correlation between the individual loci must be 

minimized—for example, if two loci are very frequently found together in any given 

strain, it is difficult to distinguish between the effect the two loci have on a phenotype. If 

there are many loci all with significant cross-correlation, then the problem of inferring a 

relationship between each genetic loci and the given phenotype becomes intractable. 

It is also clear why QTL analysis focuses on quantitative phenotypic traits, rather 

than categorical or qualitative phenotypic traits, as the ability to use a continuous or at 

least ordinal variable for the phenotype provides vastly more statistical power for 

association testing. It is absolutely necessary to accurately examine as many different 

genotypes as possible, again for reasons of statistical power. Because of this, QTL 

analysis is confined to phenotypic traits that can be practically quantified with high 

efficiency, on as many strains as possible. In C. elegans, this has typically meant whole-

worm traits observable under a low magnification microscope93, 109. 

Need for RILs 
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It is precisely to address these needs that RIL strains are generated, sequenced, 

and used for QTL analysis, particularly those that are generated by advance intercrossing. 

By construction, provided that the two parent strains contain the important variation 

being sought, RIL strains are designed to contain variation at as many loci as possible, 

since each recombination event introduced during RIL generation creates new genetic 

regions which travel separately from their original surroundings, representing new loci 

for which variation can be examined. Via extensive interbreeding, the effect of genetic 

linkage, the primary source of correlation between different loci, is mitigated. 

Consequently, the difficulty in making RIL strains that use genetically-encoded 

fluorescent markers is an enduring roadblock to investigating the genetic origins of 

phenotypic features which require these markers to be examined. 

Analytical Methodology 

While it is possible to use a technique like Analysis of Variance (ANOVA) to 

perform the actual statistical analysis necessary to extract QTLs from a given phenotypic 

and genotypic dataset, ANOVA carries the significant downside that it is unable to 

examine locations in the genome other than the exact locations of the SNP markers, 

leaving potential gaps in the coverage of the whole-genome QTL analysis. The most 

common method is instead interval mapping, introduced in 1989 by Lander and 

Bolstein19. In this method, regularly spaced intervals in the genome are considered as 

potential QTLs. For each such interval, a model is constructed assuming that the interval 

is the single true QTL, and the probability that this model leads to the observed results is 

calculated as a likelihood of odds (LOD) score. Loci with LOD scores that achieve 

statistical significance are then considered as the location of putative QTLs. The desired 

level of statistical significance is usually calculated by permutation testing, by randomly 

shuffling the relationship between the genotypes and phenotypes in the data and finding 

the LOD score that excludes all but a certain percentage of the random datasets, 

corresponding to the desired p-value. 
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One weakness of standard interval mapping is that the underlying models assume 

only the existence of only one QTL, which can cause substantial distortion to the location 

of the putative QTL. Newer methods, in particular composite interval mapping, are 

capable of handling the possibility of multiple QTLs. This is of great value in phenotypes 

with heavy multigenic inheritance, into which synaptic phenotypes almost certainly 

fall—though this is dependent on the degree of variation found in the parent strains107, 108. 

3.1.3 Motivation and Goals of this Study 

 While a powerful methodology for unraveling the genetic origins of phenotypic 

features, data collection for QTL analysis in C. elegans has thus far been limited by the 

technical requirements required to enable the statistical methods involved. The situation 

is, however, far worse for the study of subtle phenotypes such as synaptic morphology, 

which has been inhibited by the need to generate new RIL strains with the requisite 

fluorescent markers for study, and by the difficulty of quantifying such a subtle 

phenotypic features on a large scale, since this requires the accurate high-throughput 

imaging of numerous RIL strains. This is particularly disappointing, since it is precisely 

these kinds of subtle synaptic phenotypes that are hypothesized to drive some human 

diseases97-101. 

The difficulty of quantifying these subtle features on a large scale has been 

addressed by Chapter 2 of this thesis, however; it remains only to consider methodologies 

for using the existing RILs in conjunction with a fluorescent marker. As we shall see, it is 

possible to examine fluorescent features in the F1 progeny of a marker strain and RIL 

strain, enabling QTL mapping on synaptic morphology in C. elegans. Key to this again 

are the contributions of chapter 2: heterozygote markers are very dim, about the same 

intensity as autofluorescent fat droplets in C. elegans, and the previous generation of 

automated methods would have balked at segmenting them accurately. Traditional 

manual imaging and segmentation, on the other hand, would be prohibitively labor and 

time-intensive. 
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By using a collection of advanced intercross lines generated by the laboratory of 

Erik Andersen105 and near isogenic lines110 (NILs, see Fig. 3.1), we identify a region of 

chromosome IV that is a QTL for differences in synaptic morphology between the Bristol 

Wildtype N2 and the Hawaiian isolate CB4856, demonstrating the feasibility and value 

of this approach to QTL mapping in a previously infeasible context. 

3.2 The Parent Strains N2 and CB4856 have Subtle, but Measurable Differences in 

Synaptic Morphology 

 Before setting out to use a modified methodology to perform fluorescent marker-

based QTL, it was necessary to first discover two potential RIL parent strains with a 

verifiable difference in synaptic morphology. As discussed in the previous section, it is 

most likely futile to perform a QTL mapping on a set of strains that may not even have 

variation that affects the phenotype of interest. To ensure that a given a set of RILs has 

variation affecting a given phenotype, it is necessary to first verify that the parent strains 

differ in some way in the given phenotype—particularly in heterozygote crossing with 

the marker strain. 

 To do this, I conducted an initial examination of two non-N2 strains of C. 

elegans, the liquid culture strain LSJ2 and the Hawaiian Wild Isolate CB4856, using the 

same marker strain and neuron as study as Chapter 2 (the genotype wyIs92 [Pmig-

13::snb-1::yfp]48 and the motor neuron DA9), so as to enable me to re-use the same 

overall methodology with as little adaptation as possible. Rather than integrate the marker 

from wyIs92 into these strains via repeated outcrossing, as would be typical, I instead 

examined the F1 progeny of crosses between the two strains and wyIs92, as this would 

most closely match the scenario envisioned for the future imaging of RILs. In order to 

make the germane comparison with the Bristol wildtype N2, it was also necessary to 

image the F1 cross between wyIs92 and N2. In addition, I also imaged the F1 progeny for 

crosses with the genotype wyIs92;jkk-1;unc-104, the double mutant from Chapter 252, as 
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our experience with epistasis in the double-mutant suggested that it might be useful to 

examine both the base strain and strains with already existing synaptic mutations. 

 Figure 3.2 summarizes the results of this initial study. We had intended to 

examine other wild isolates of C. elegans to find one with a difference in synaptic 

morphology, but this proved to be unnecessary, as CB4856 already showed a substantial 

different in synaptic morphology from N2. Specifically, wyIs92xCB4856 has synapses 

that are larger and bright in intensity pretty much across the board, but with little change 

in variability or evident change in the distribution of these features. 

It is worth noting that in this study we expanded the number of features to 48; our 

previous experience with the mutant jkk-1 in Chapter 2 had indicated to us the importance 

of studying the distribution of synaptic sizes, rather than just the area, so we added 19 

features to our feature set designed to detect such deviations. The new feature set is 

summarized in Table 3.1.
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Table 3.1 Features measured from synaptic domain of C. elegans for QTL mapping. 

Features 1-29 are identical to Table 2.1. 

Synaptic Feature (Over 

Synapses in Image) 

Category Mean SD/Mean 

Area (Pixels in Synapse) Size Feature #: 1 14 

Area/(Area Calculated from F6 

and F7) 

Shape 

2 15 

Perimeter/(Perimeter from F6 

and F7) 

3 16 

Eccentricity of Approximate 

Ellipse 

4 17 

Diameter of Circle with Same 

Area 

Size 

5 18 

Major Axis Length of 

Approximate Ellipse 

6 19 

Minor Axis Length of 

Approximate Ellipse 

7 20 

Mean Intensity of Pixels in 

Synapse (arb) 

Intensity 

8 21 

SD/Mean Intensity of Pixels in 

Synapse (arb) 

9 22 

Perimeters (Pixels along edge of 

synapse) 

10 23 

Max Intensity in Synapse 11 24 

Min Intensity in Synapse 12 25 

Total Synaptic Intensity (F1*F8) 13 26 

Skewness of Intensity 42 N/A 

Distributional Features 

Base 

Feature 

Category 10th  

%tile 

25th  

%tile 

50th  

%tile 

75th 

%tile 

90th 

%tile 

Skewness Max 

Area Size 30 31 32 33 34 40 41 

Major 

Axis 

Length 

35 36 37 38 39 43 44 

Base 

Features 

Category Mean 0-25 

%tile 

Mean 25-50 

%tile 

Mean 50-75 

%tile 

Mean 75+ 

%tile 

Mean 

Intensity 

Intensity 45 46 47 48 

Misc. Features    

Synapse Number 

Misc. 

Feature #: 

27 

 

Mean Distance between 

Synapses (pixels) 

28  

Synaptic Domain Length (pixels) 29  
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Figure 3.2: Comparison between wyIs92xQX1430 and wyIs92xCB4856. In both 

figures, the red bars and the left side bar show the percent difference in various 

features (positive values mean CB4856 is higher) while the blue line and right side 

bar show the significance level according to Welch’s T-test. The horizontal blue line 

shows the 95% significance level after the Bonferroni correction for multiple 

comparisons. Features are sorted by significance and labels at the bottom are not 

shown for clarity; the significant features on the left in part A are, in order, features 7, 

5, 1, 43, 10, 3, 48, 13, 47, 6, 46, 12, 44, 2, 15, 27, 16, 45, 9, 30, 8, 25, 18, 28 (See 

Table 3.1). 
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 With this data in hand, it was apparent that N2 and CB4856 would serve as fertile 

ground for a search for synapse morphology-affecting QTLs. 

3.3 Experimental Protocol and Methodology 

In this study, we perform a QTL analysis on RILs between the parent strains N2 

and CB4856, targeting QTLs that influence the morphology of the synaptic domain of the 

motor neuron DA9. We requested from the laboratory of Erik Andersen an initial sample 

of 80 published RIL strains, generated by an advanced intercross between the strains 

CB4856 and QX1430105. QX1430 is a variant of N2 that carries the wildtype version of 

npr-1, to suppress the significant effects of the laboratory npr-1 on QTL analyses, and a 

transposon knockout of the peel-1/zeel-1 genetic element, which drives hybrid 

incompatibility between N2 and CB4856111. This genetic element is critical to remove, as 

it otherwise substantially suppresses recombination frequency in its vicinity, drastically 

reducing the number of separate QTL intervals in that section of the genome. The marker 

we used again wyIs92([Pmig-13::snb-1::yfp])48; it should be noted that while this marker 

still contains peel-1/zeel-1, there is no embryonic lethal effect unless the pair of genes is 

separated by recombination during meiosis, something that cannot happen before the F2 

generation in a cross.  

 
Figure 3.3 Overview of the approach to QTL analysis taken here. 
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 In order to conduct a QTL analysis without generating a full set of RILs with the 

desired marker, we designed a protocol for imaging the Day 1 adult F1 progeny of the 

marker genotype wyIs92 and each of the RILs. In order to image a reasonable sample size 

of worms derived from each of RILs, we applied the high-throughput imaging pipeline 

developed in Chapter 2 of this thesis. By doing this, we bypass the two largest hurdles to 

conducting QTL analysis of fluorescently-labeled synaptic domains. By quantifying the 

phenotypic properties of the synaptic domains of at least several dozen progeny from 

each of the RIL strains, we gathered the phenotypic data necessary to perform a QTL 

mapping of the entire C. elegans genome. 

3.3.1 Preparation of F1 Progeny for Imaging 

In the methodology we lay out below, one consideration we must keep in mind is 

sample size. By using F1 progeny, we limit the number of animals we have that are of the 

right age for imaging at any given time, with the result that we must consider how many 

animals are lost in every step of the process. Given the number of animals available for 

homozygote studies, many of the experimental procedures traditionally used have no 

consideration for the number of animals lost—but this something we must keep in mind. 

It is not, however, a truly critical consideration, as in the worst case we could make more 

mating plates per cross—this just introduces more labor and logistical overhead. 

To prepare F1 progeny for imaging, I crossed males of the genotype wyIs92 with 

hermaphrodites of the RIL strain being studied by picking adult males and L4-stage 

hermaphrodites onto a 35 mm diameter nematode growth medium (NGM) plate freshly 

seeded with 50 µL of OP50 E. coli. This is a standard mating protocol112; the small, 

freshly seeded source of food causes the C. elegans individuals to crowd a very small 

area, drastically increasing the chance of mating, and the use of L4, pre-reproductive 

hermaphrodites ensures that they receive packets of sperm as early as possible, which 

suppresses self-fertilization. Substantially more males are picked than hermaphrodites to 

further assure mating. 
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By using males of the fluorescent marker strain, we can guarantee that any 

progeny that are observed to have the fluorescent marker are legitimate F1 progeny, since 

any progeny produced by hermaphroditic self-fertilization will not have the marker and 

can be simply ignored during imaging. This eliminates one of the common concerns 

about crossing C. elegans populations, and enables us to adjust the usual mating 

proportion—20 males to 3 hermaphrodites—to a less cautious 20 males to 5 

hermaphrodites. This increases the number of progeny obtained at the risk of producing 

some non-mated progeny, which is no longer a concern. After the initial experiments, I 

further increased the number of progeny obtained by crossing 2 sets of 20:5 

simultaneously for any given RIL, rather than 1. As we will see, this is roughly what is 

necessary to produce reasonable number of processed images in the final data set. 

It was also observed that with the given protocol, the plates often ran low on E. 

coli 3 days after initial mating, with a measurable impact on the final results compared to 

plates that did now. After discarding the data where this issue occurred, I adopted a 

protocol where on day 3 the entire agar plate is sliced in half and transferred physically to 

two new 60 mm diameter pre-seeded with E. coli, flipping it over so the worms land on 

the lawn. Another option would have been to add more liquid E. coli, but this method 

guarantees an ample supply of food, preventing potential influence on the final 

experimental results.  

Given the design of the microfluidic device, which was optimized to allow Day 1 

adults to fit neatly into the imaging channel62, we were able to image worms of the 

desired age (roughly Day 1 Adult) simply by refusing to image worms that were 

substantially narrower or thicker than the size of the channel (thicker worms can be 

prevented from clogging the device by the use of the flush channel). Both traditional and 

high-throughput imaging of C. elegans is typically done on synchronized populations of 

individuals hatched from their original eggs at roughly the same time. However, both of 

the common methods for generating synchronized populations, hypochlorination 
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(“bleaching”) and the “lay-off”113, drastically reduces the number of progeny obtained 

relative to the full egg-laying productivity of the adults, with the number of progeny 

dependent on the number of adults transferred. For our purposes, the number of progeny 

lost can easily become unacceptable. Thus, we instead used the microfluidic device’s 

dimensions as a novel method of resolving this methodological hurdle, providing 

synchronization that we estimate to be within ±6 hours, comparable to bleaching or a less 

stringent lay-off. This does assume that the RIL hybridization and the F1 crossing process 

do not cause substantial changes in the growth rate or size of the adult worms, so it was 

necessary to monitor the populations for evidence of such an effect, but this was not 

observed. 

 We found that the optimal time to image the population of F1 progeny was on the 

fifth day after initial mating, which permits 1 day for the L4 P0 parents to reach maturity, 

an additional day to reach peak egg laying, and 3 days for the progeny from that day to 

reach Day 1 adulthood. These progeny were washed off the plate with M9-triton and used 

for imaging; the P0 parents could be excluded on device due to their evident enormous 

size. 

3.3.2 Imaging and Quantification 

 Once the F1 progeny were obtained, imaging proceeded much as described in 

Chapter 2, using chilled fluid for immobilization, with a few key modifications. The key 

difference is that with the limited number of F1 progeny available for imaging, we 

maximized the numerical efficiency of imaging by using a semi-manual procedure, with 

the device states controlled manually while the details of the valve arrangements were 

handled automatically. This was motivated by the follow considerations: 

1) As discussed previously, the random orientation of worms entering the imaging 

region imposes a 75% attrition on the number of images. In worms that arrive 

head-first, we can mitigate this by moving the device stage to focus the objective 

on the tail. While only some of the immobilized worms will have the DA9 neuron 
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synaptic domain up against the glass, this is sufficient to recover a substantial 

number of the lost worms. 

2) It is now necessary to perform mild size selection on the individuals as they enter 

the imaging region of the device, excluding worms that are noticeably too small 

or too large.  

3) The fully automated methodology sometimes takes poor images, particularly 

since worms immobilized by cooling still twitch occasionally 

4) It is necessary to calibrate automated imaging initially, losing a small number of 

animals setting automation parameters for a given device and experiment. 

Further Changes to Features and Quantification 

 To perform this QTL mapping, a number of additional changes were made to the 

quantification pipeline, both planned early on and due to experimental observations about 

the dataset.  

1) As mentioned in Section 3.2 and illustrated in Table 3.1, An additional 19 features 

were added to the feature, designed to examine the distribution of synaptic 

intensity and size, after it was observed that these were important to measure the 

phenotype of the known synaptic mutant jkk-1.  

2) For the intensity features, background normalization was added, replacing 

background subtraction. Over the course of experimentation, it was observed, for 

instance, that the intensity of the synapses as originally measured showed a strong 

correlation with the passage of time—more specifically, intensity tended to vary 

with whether an imaging run was taken earlier or later in the overall set of 

experiments. It was found that this phenomenon closely tracked a similar trend in 

the background intensity of the images, and could be eliminated by dividing this 

out. It is not clear what the source of these long-term correlations were, but one 

likely explanation is, for instance, a gradual change in the intensity of the 

fluorescent light source over long-term use. 
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3) It was also observed that the number of synapses reported by the algorithm was 

somewhat less than the 25 average found in previous manual observations. On 

detailed review of the segmentation process, it was found that a common 

segmentation error was the inappropriate merger of neighboring synapses into one 

larger blob during segmentation. After some experimentation with other methods, 

it was decided to adopt a consensus method—by using the SVM methodology we 

already had on hand for the detection of DA9 neurons to select pixels, it was 

possible to substantially refine the segmentation of individual synapses, without 

reintroducing the anomalous fat droplets and other problems of the SVM 

approach. Unfortunately, this is a trained method which we already know to be 

very specific to given imaging conditions, as discussed in Chapter 2, and the 

combination of the two different methodologies greatly increases the complexity; 

we decided this was acceptable given the sensitivity of QTL mapping to 

inaccurate data and noise. 

 

 With these changes in the methodology established, I set out to gather as enough 

data from the RIL crosses as possible, in order to perform QTL analysis. After false starts 

where data was lost due to problems with starvation (as mentioned in 3.3.1) and due to a 

shift in experimental locales, data from 47 strains was gathered over the course of 4.5 

months, interrupted by a major equipment failure. The results of this data collection, still 

ongoing, will be presented in section 3.4. 

 With the full experimental procedure in hand, it is now possible to discuss sample 

size—specifically, the reasons why sample size for imaging sessions is a significant 

concern for this methodology and why pains were taken to mitigate worm losses 

whenever possible. Unfortunately, starting from the very beginning of the experimental 

procedure, there is a steady attrition in experimental animals, with the ultimate empirical 

result that the average number of usable images at the end of the procedure was optimally 
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about 60-80, with many imaging sessions suffering further loss due to device failures or 

simple human error.  

 The sample size breaks down as follows: 

1) The average N2 C. elegans individual lays about 291 eggs in its life span over 

nearly 3 days, subject to environmental conditions. With the experimental 

timing we have chosen and ±6 hour precision on our judgment of worm age 

on the device, about 75 of these progeny will be the right age at the imaging 

time114. Using a total of 10 hermaphrodites, we then have 750 progeny that 

may potentially be imaged. 

2) Significant losses occur when transferring worms from the plate into the 

microfluidic vial. This is done with washing with M9-Triton, but even 

rigorous washing leaves a large number of adults still on the plate. This is 

complemented by unknown losses during the microfluidic loading process, 

usually due to worms that stick to parts of the tubing or debris. It is unclear 

how much loss this represents, but a 20% loss rate would leave 300 

individuals remaining. 

3) Of these 300 individuals, roughly 50% will be male progeny, which we do not 

image. Some small number—around 5%—will be unmated progeny as well. 

This leaves 135. 

4) Of these 135 remaining individuals, about half will enter the device head 

instead of tail-first, and another half of the remaining will fail to have the 

dorsal side pressed against the glass as required for imaging. An additional 

subset will enter with curled tails or some other inappropriate orientation. 

Despite attempts to recover some of the head-first imaging by manual 

imaging, we estimate only about 60% of the worms that enter the device 

produce valid images. This leaves about 81 individuals. 
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5) Of the 81 such images taken, an additional 20% or so are lost to issues with 

segmentation, leaving about 64 images remaining. 

In practice, many imaging sessions produce fewer than this, due to experimental 

contingencies and occasional clogs in the device that must be dealt with. 

Principal Component Pursuit for Sparse Noise Reduction 

To reduce sparse noise outliers in the dataset, particularly in a few particularly 

unstable features that vary substantially in the event of poor segmentation (e.g. the 

average distance between synapses), an implementation of principal component pursuit 

(PCP) was written, based on the algorithm provided in Candès et al., “Robust Principal 

Component Analysis?”115. Given a data matrix 𝑀 whose expected rank is substantially 

lower the dimensionality of the data matrix, but which is known to be substantially 

contaminated by high magnitude sparse noise, Principal Component Pursuit divides the 

matrix into two components L and S, such that 𝑀 = 𝐿 + 𝑆, L is as low-rank as possible 

and S is as sparse as possible. This effectively removes the sparse noise, provided that the 

data is a priori known to be low rank, something which is almost certainly true for 

synaptic phenotyping data. The convex optimization can be performed exactly by an 

alternating iterative algorithm which we will not discuss here, referring the interested 

reader to Candès et al115. While the algorithm was not ours, the implementation was my 

own. I used the suggested default: 

𝜆 =
1

max(𝑁1, 𝑁2)
, 𝑤ℎ𝑒𝑟𝑒 𝑀 𝑖𝑠 𝑁1 × 𝑁2        (1) 

as the cost parameter controlling the relative importance of the sparsity of S and the low-

rank of L, following the advice of Candès et al., and did not find a need to change it.  

PCP was then performed on the entire dataset at once, combining data from 

individuals for every strain into one large data matrix. While for many features this post-

processing of the dataset had little effect, the most volatile features, particularly 

integrated intensity and synaptic domain length, which contain significant outliers due to 



 79 

merged synapses and missing regions of the synaptic domain during segmentation, were 

substantially normalized by the application of PCP, reducing intrastrain variance (Fig. 

2.12). Since these features were known a priori to be most problematic and sensitive to 

segmentation and imaging issues, and were frequently observed to be incorrect (e.g. in 

many cases individual synapses are concealed by bending of the worm tail or an 

intervening fat droplet), PCP is behaving as desired, and salvaging a number of images 

which would otherwise have to be manually discarded. It should be noted, however, that 

this form of data conditions carries the implicit assumption that the data gathered from 

each strain shares the same underlying eigenvectors. While we believe this is likely true, 

since the description of the synaptic domain is likely low rank, it does introduce the 

possibility that PCP would conceal some differences between strains. 
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Figure 3.4 Scatterplots of Integrated Intensity vs. Synaptic Domain Length, before 

and after PCP application. Before PCP, a substantial number of data points have 

implausibly large integrated intensities, with an implicit synaptic area as high as 40 

µm2 and an implausibly large range in synaptic domain length (roughly 16 to 100 

µm). After PCP, the corresponding values are about 20 µm2 and 40 to 80 µm, which is 

much more biologically plausible. 
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3.3.3 Additional Design Considerations 

 The proposed experimental methodology, particularly the use of F1 crosses, 

introduces a number of new potential concerns to the QTL analysis. Fortunately, these 

are not serious or were already addressed in the design. 

Firstly, the use of F1 progeny rather than a full integration of the synaptic marker 

into the RILs adds a subtlety to what can be detected—because the marker genotype 

wyIs92 itself has N2 as a background, recessive synapse-affecting variants found in 

CB4856 cannot be detected with the currently given protocol. In our case, since the 

synaptic variation we are seeking was already detected in the parent strains (comparing 

wyIs92xN2 with wyIs92xCB4856), a QTL dominant in CB4856 seems to already be 

present, so this subtlety doesn’t damage us. 

It would be possible to detect QTLs recessive in CB4856 by integrating the 

synaptic marker into homozygous CB4856—a one-time procedure—and then comparing 

the parent crosses wyIs92(CB4856 background)xN2 and wyIs92(CB4856 

background)xCB4856. If a recessive QTL needed to be found, this CB4856 background 

marker strain could then be crossed into the RILs in the exact mirror of the protocol we 

used in our study. In the hypothetical scenario where no dominant QTL had been found, 

recessive QTLs are only a short methodological distance away. 

Secondly, the given approach does not completely rule out distorting interactions 

between the heterozygous N2 background of the marker and the RIL background being 

studied, which would cause a heterozygote-only effect that doesn’t show up in the 

homozygote. A relatively short follow-up study, examining the full homozygous 

introgression of the relevant QTL into wyIs92, would be necessary to show the effect is 

not heterozygote-only, and we fully intend to carry one out. It is worth noting, however, 

that this kind of heterozygote-only effect is not only an unlikely scenario, but would itself 

be of scientific interest. In addition, since a significant effect was already found in the F1 
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crosses of the markers with the parent strain, it is at least not possible for the phenotypic 

change being sought to disappear entirely.  

Finally, we also face the question of what phenotypic feature to use for QTL 

analysis. Traditional interval mapping uses only one quantitative measure of the 

phenotype, but we have 48 such measures, and could devise as many additional measures 

as desired. As also discussed in 3.4.1, to avoid doing too many comparisons, we choose 

three of the most representative features from the set that was found to differ in the parent 

strains, synaptic area (#1), mean synaptic intensity (#8) and the Top 25% of integrated 

synaptic intensity (#48), as well the first two principal components of the features, which 

contain the substantial majority of the variation. 

3.3.4 Inter-trial Controls and Auxiliary Studies 

 In order to properly validate the ongoing study, and to ensure consistency across 

multiple trials and across multiple imaging sessions, I discuss here a subset of the 

additional data analysis that is necessary to guard against potential fluctuations in the 

consistency of the imaging. 

 One potential source of concern is variability between different imaging sessions. 

An obvious way to test for potential differences between imaging sessions is to compare 

different imaging sessions for the same strain, but taken on different days. In this, we 

have a natural source of experimental data to make this comparison: due to experimental 

issues—device rupture, human error, cooling system breakdown—or concern about 

insufficient sample size, a subset of the data for certain strains already draws upon more 

than one separate experiment. I tested different imaging sessions for the same strains 

whenever more than one imaging session was available, and whenever the sample size on 

each individual session between compared was greater than 10 individuals. There were 2 

such sessions, one involving the parent strain QX1430. Figure 3.5 shows comparisons 

between the different trials, showing that inter-session variation was not statistically 

significant and lower than the already measured difference between the parent strains. 
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Figure 3.5 Inter-trial comparisons for two different imaging sets: QX367xwyIs92 and 

QX1430xwyIs92. These comparisons show no significant difference. Charts are the 

same style as in Figure 3.2. Labels in the titles indicate the dates on which images 

were taken; the numbers in the parenthesis are the sample size of images after full 

processing. The red bars and the left side bar show the percent difference in various 

features (negative values mean the second set of data is lower) while the blue line and 

right side bar show the significance level according to Welch’s T-test. The horizontal 

blue line shows the 95% significance level after the Bonferroni correction for multiple 

comparisons. Features are sorted by significance and labels at the bottom are not 

shown for clarity. 
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In order to address the possibility that leaving worms suspended in fluid in tubing 

awaiting imaging in the microfluidic device—sometimes for a few hours—would affect 

the results of imaging, I calculated the Spearman’s Rank Correlation Coefficient between 

every feature of every imaging run and the order the worms were imaged in, whenever 

the number of worms was greater than 10. The histogram of correlation coefficients is 

shown in Figure 3.6, along with random data of the same size for each imaging run; the 

two are indistinguishable. Examining each of the features separately produces similar 

histograms (data not shown). 
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Figure 3.6 Histograms of Spearman’s Rank Correlation Coefficient for (top) all of our 

imaging data in every feature and (bottom) size-matched random data. The two 

histograms are nearly indistinguishable. The total number of vectors for which the 

correlation coefficient was calculated was 63264. 
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3.4 QTL Analysis and Results 

 With the fully-processed data in hand for 47 strains, we turned our attention to the 

actual QTL mapping. Before doing so, it was necessary to decide what quantitative 

features to do the QTL mapping on. QTL mapping typically focuses on only one 

quantitative, phenotypic measurement, but we had 48 features in hand. It would not have 

been wise to perform QTL mapping on all 48—this would have resulted in either overly 

favorable statistical testing, due to the multiple comparisons, or an under-powered test, if 

a correction such as the Bonferroni correction were used—since many of the features are 

substantially correlated with each other, a full multiple comparisons correction would 

understate the level of statistical significance. 

 Thus, we chose to narrow the scope of our focus to two classes of features that we 

felt were well-justified: 5 features that had shown a statistically significant difference 

between the two parent strains, chosen to be as distinct as possible, and the magnitude of 

the first two PCA components, with PCA being performed on a matrix containing all of 

the individual animals measured. This formulation provides more statistical power for 

detecting the true QTLs responsible for differences between the parent strains, without 

performing an undue number of comparisons.  

The first two principal components were chosen because they are by far the most 

explanatory principal components (35 % and 33% of the explained variance, respectively, 

compared to 9% for the third principal component). Besides the first two principal 

components, the features chosen for this were the mean of the synaptic area, the mean 

synaptic intensity, and Top 25% of Integrated synaptic intensity (Features 1, 8, 13 in 

Table 3.1, respectively). There is obviously a substantial relationship between some of 

these features, but each of these examines synaptic intensity in a slightly different light, 

so we feel it is appropriate as long as we proceed with caution. 

3.4.1 QTL Analysis 
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 To perform the QTL analysis, we used a standard interval mapping, using the 

R/qtl library116 and modifying code provided to us by Patrick McGrath19. Significance 

level was tested for with permutation testing, using 100 permutations each. We did not 

elect to use composite interval mapping, as manual inspection of the intensity values 

suggested the strong possibility of there being one strong QTL affecting the phenotype 

(Fig. 3.7). 

As can be observed in Figure 3.8, while an intriguing peak is consistently 

observed in chromosome IV, one which has persisted and grown slightly as more RIL 

data has been accrued, this peak has not yet achieved statistical significance with the 

given amount of data.  

 
Figure 3.7 Integrated Synaptic Intensity for all of the RIL crosses so far. While there 

is some degree of non-bimodal variation, the data is suggestive of one, strong-effect 

QTL driving the main difference in phenotype. RIL strain labels are omitted for 

clarity; strains are sorted from highest feature value to lowest. 
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Figure 3.8 QTL mappings for PCA Components #1 and 2, as well as Features 1, 8 

and 48. Y-axis is LOD score, x-axis is locations on chromosomes I through V and X. 

Tick marks at the bottom show the locations of QTL markers. There is a consistent 

peak near the center of chromosome IV in all measures, with the highest peak 

occurring between nucleotide 2,914,279 and 3,737,430 of chromosome 4 (version 

WS244 of Wormbase2). 95% significance is at LOD score ~3, but this is not 

consistent between measures and should not be relied upon as more than a guideline. 
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3.4.2 Near-isogenic Lines (NILs) for Detailed Examination of a Potential QTL 

One option to proceed given the results of the QTL mapping so far would be to 

continue imaging more RILs, and that is one avenue which we intend to pursue. 

However, in order to perform a focused examination of the most interesting LOD score 

peak, as seen in chromosome IV, 4 near-isogenic lines (NILs) to N2 were requested from 

the laboratory of Cori Bargmann110, introgression lines composed primarily of the N2 

genotype with parts of the CB8456 genotype covering the specific region or nearby 

regions of chromosome IV found in the current QTL study. Specifically, CX11901 

covers the region from 151,889 to 3,920,366 base pairs (b.p.)., CX11879 from 2,761,525 

to 3,347,952 b.p., CX12777 from 1,799,032 to 3,920,366 b.p. and CX11932 from 

3,347,952 to 13,049,020 b.p. 

Unfortunately, these strains are based on N2, not QX1430 as the RILs in the QTL 

mapping were, and thus carry the N2 copy of npr-1, a potential concern if the RILs we 

find turn out to be on chromosome X where npr-1 is. The F1 progeny of these strains 

with wyIs92 were imaged using the same protocols as the RILs. 

 As can be seen in Figure 3.8, in mean synaptic intensity, the average brightness of 

the pixels in each synapses, the 3 NILs containing the LOD peak on chromosome IV 

have the same phenotype as wyIs92 x CB4856, while the one that doesn’t, CX11901, 

does not, a result strongly suggestive of a synaptic morphology-affecting QTL residing in 

the region covered by these 2 NILs, in this case nucleotide positions 2,761,525 to 

3,347,952 of Chromosome IV, as labeled in the WS244 version of Wormbase2. 

Incorporating details from the location of the peak in the previous QTL further refines the 

selected position to the region from 2,914,279 to 3,347,952. 

 This effect, however, does not carry over exactly into synaptic area or the top 

25% integrated intensity (which reflects the average intensity of the 25% of synapses 

with the largest integrated intensities, which is mean intensity multiplied by the synaptic 

area). Here, the two NILs which contain small regions containing the QTL show the 
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effect (i.e. they match wyIs92 x CB4856), but CX11901, which contains nearly the first 

quarter of chromosome IV containing the QTL, does not. This is suggestive of a potential 

multigenic effect, and not entirely unusual. For example, the same effect was seen in a 

study of chemosensation for bacterial peptides using these same NILs110. It is worth 

noting that the region of chromosome IV covered by CX11901 contains large LOD score 

regions of chromosome IV (Fig. 3.8), raising the change of another QTL in the area. 

 Some of the data from one of the NIL crosses here was imaged by Farhan Kamili, 

a graduate student in the Lu Lab. 
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Figure 3.9 The parent strains and NILs after crossing with wyIs92, measured in 

features 1, 8, and 48, respectively. The mean synaptic intensity shows an effect 

suggestive of a QTL in the suggested region, but the other two features show a more 

complicated, potentially multigenic story. 
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 To fully verify this effect, it is profitable to integrate the wyIs92 marker directly 

into the NILs and image the homozygotes, a process which is considerably simpler than 

integration with an RIL or with CB4856, because of the limited number of markers that 

must remain consistent. Preliminarily, this has been done for three of the NILs, 

CX11879, CX12777, and CX11901, which can be seen in Figure 3.10. The result here is 

consistent with the results from the heterozygote, showing a substantial difference 

between these three strains and the N2 base wyIs92, but is not yet complete, lacking the 

full integrant with CB4856 and CX11932, but is suggestive. The partial effect seen in 

CX11901 synaptic area and Top 25% integrated intensity stands in intriguing contrast to 

the effect seen in the heterozygote. 
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Figure 3.10 The homozygote wyIs92 and the NILs CX11879, CX11901, and 

CX1277, integrated with the wyIs92 marker. All three show significant differences 

with the N2-based wyIs92, hinting at a synapse-affecting QTL in the suggested 

region. 
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3.5 Discussion 

 In this chapter of the thesis I demonstrate the application of our high-throughput 

microfluidic imaging pipeline to QTL analysis, mapping a difference in the size and 

intensity of the largest synapses of worms with the CB4856 genotype down to a narrow 

putative QTL on chromosome IV. In doing this, I help illustrate the value of these 

techniques to quantitative genetics, a domain previously unaddressed by this kind of 

microfluidic imaging. By using microfluidics to overcome the otherwise pernicious 

methodological limitations of imaging heterozygote crosses between established RILs, 

we were able to establish a technique for effectively imaging and mapping fluorescently-

labeled phenotypes in RILs, something which had previously been hampered by severe 

methodological limitations. This is a substantial expansion of a lucrative genetic mapping 

technique to a new domain, one of key importance to understanding multigenic, subtle 

phenotypes. 

 The potential targets of such a new approach to QTL mapping are far-ranging, 

going far beyond synaptic phenotypes or even C. elegans. Firstly, the demonstration that 

heterozygotes may be used to extract novel genotypes raises the possibility of performing 

a similar QTL study whenever the process of generating a large population of RILs with 

a single marker or mutation is difficult, such as in slower-breeding organisms like mice. 

It also raises the possibility of genetic studies that specifically focus on variation that 

exists, rather variation generated by mutagenesis—for instance, one might search an 

existing genome for QTLs that specifically affect the phenotype generated by a particular 

mutation, by crossing this particular mutation into a large set of RILs and examining the 

progeny.  

Secondly, the specific demonstration that fluorescently-labeled phenotypes may 

be used for this kind of quantitative genetics, using high-throughput microfluidics, has 
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obvious applications for any C. elegans phenotype that requires a fluorescent marker to 

properly identify. Rather than focusing on macroscopic or easy to quantify phenotypes, 

QTL could be done on specific, difficult to detect structures, or on the localized 

expression of certain proteins or mRNA, something which is already done on a whole-

worm scale but difficult to achieve on individual cells or structures117, 118.  

Finally, the techniques introduced in this chapter have application beyond just 

QTL mapping specifically, but can generalized to other types of quantitative genetics, or 

indeed any study where the detailed phenotyping of a large number of different strains is 

desired. It could be used for broad studies of wild isolates, for example. Much could be 

done to illuminate the still nebulous portions of the C. elegans genome, getting us closer 

to a full understanding. In particular, a deeper understanding of multigenic, subtle 

phenotypes like synaptic morphology will help drive in turn a deeper understanding of 

related multigenic human diseases such as autism spectrum disorder and schizophrenia. it 

is our hope that this demonstration helps to spur similar work on a variety of topics. 

3.5.1 Limitations and Considerations 

 The methodology outlined and performed in this chapter nonetheless has a 

number of limitations. Some of these limitations are shared with QTL itself and inherent 

to the statistical methodology—for instance, the need for the parent strains to have 

meaningful differences in the phenotype being studied, and for these parent strains to 

have an existing population of RILs between them.  

Despite the methodological innovations of this chapter, performing a QTL 

mapping in this fashion is still time-consuming and laborious relative to many types of 

experimentation. While this is in some sense inherent to the statistical requirements of 

QTL mapping, and certainly an easier task than many types of long-term 

experimentation, there is room for improvement. Improvements in the device design, 

such as direct orientation control of the animal, either in a head vs. tail or dorsal vs. 

ventral sense, would greatly increase the numerical efficiency of imaging, relieving the 
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methodological restrictions imposed by the need to manage sample size. Even a device 

with the ability to reject worms in the worm orientation back into the inlet channel could 

be sufficient. 

From the point of view phenotype quantification, there are some additional 

improvements that might be made. The reliance on a SVM method we know overfits the 

imaging setup is disappointing but may be necessary—that case, perhaps a method with 

better regularization might be appropriate. The reliance on manual, carefully chosen 

features is also unfortunate, and may leave out potential phenotypic characteristics. While 

it is unlikely that expertly-chosen features can be avoided, it is possible that more 

objective feature selection could be performed. 
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CHAPTER 4 

FULLY-AUTOMATED 3D TRACKING AND ANALYSIS OF 

WHOLE-BRAIN NEURAL ACTIVITY IN C. ELEGANS 

 

 Much of the material in this chapter is adapted from a manuscript in preparation, 

Zhao et al. “Fully-automated 3D Tracking and Quantification of Neurons in C. elegans 

Global Brain Imaging”. A debt is owed to the lab of Manuel Zimmer at the Research 

Institute of Molecular Pathology (IMP) in Vienna, Austria, who provided the hand-

curated calcium imaging videos used in much of this chapter, from the publication Kato 

et al, “Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis 

elegans” in Cell119. This chapter discusses the development of an accurate and fast 

algorithm for the automated segmentation and tracking of neurons in whole brain calcium 

imaging, enabling the evaluation of neural activity in many neurons over a large number 

of worms, without the lengthy manual curation that currently bottlenecks this approach to 

functional neural imaging. 

4.1 Motivation, Background and Overview 

One of Sydney Brenner’s original reasons for selecting C. elegans as a model 

organism was the expectation that its small, stereotyped nervous system would provide 

crucial insight into the origins of behavior, insights that were obscured by the relatively 

enormous neural systems of even D. melanogaster. In C. elegans, however, 

electrophysiology was discovered to be technically extremely challenging, due to both 

the small size of the animal and its pressurized pseudocoelom, which ruptures 

explosively upon puncture. While heroic efforts have been made to make 

electrophysiology possible, the necessary investment in training and resources has limited 

it to only a few specialized labs77, 120-123. Instead, much of the focus for functional 

imaging of neural activity in C. elegans has been on Genetically-encoded calcium 
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indicators (GECIs) such as cameleon73, 124 or GCaMP125, which fluoresce in tune with the 

local concentration of Ca2+ ions, thus serving as a proxy for neural activity that exploits 

the optical transparency of C. elegans to avoid damaging the animal. 

4.1.1 Calcium Imaging, Whole Ganglion Imaging, and Motivation 

Calcium imaging has traditionally been done on at most a few neurons a time, 

with research groups focusing on individual neurons or circuits in an effort to deduce or 

analyze their function. While the interrelationships of small subsets of the C. elegans 

nervous have been decoded in this fashion, particularly in the sensory processing of 

individual sensory stimuli or in the direction of core motor behaviors67, 121, 126-130, more 

holistic understanding has proven elusive, especially when it comes to the difficult to 

correlate interneurons. It would be useful to observe the activity of many neurons at once, 

perhaps even the entire nervous system at once (302 neurons), but until recently the 

tradeoffs between temporal resolution, spatial resolution, and field of view have 

prevented successful imaging. This requires imaging at a rate of at least 10 Hz, at a 

magnification low enough to capture a large part of the worm in the field of view (usually 

40x or less), but retaining enough spatial resolution fine enough to segment individual 

neurons, not achievable with most fluorescent scopes at the given microscope. 

With recent innovations in microscopy, for instance the advent of spinning-disc 

confocal and light-field microscopy, it has finally become possible to perform this kind of 

“whole brain”, “global brain”, or “pan-neuronal imaging”, recording calcium traces from 

a large number of neurons at once; the number of neurons imaged depends on the 

imaging method, how much the movement of the worm is restricted, and the quality of 

neuron identification within the collected videos. Both freely-moving and confined 

imaging has been reported, with the number of cells recorded varying from around 60 to 

over 120 (Table 4.1)4, 8, 14, 17, 119. 

The processing of these videos remains a substantial challenge, however, limiting 

published studies to, thus far, at most 5 individuals. The requirement that imaging be 
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carried out on a wide field of view limits the ability of microscopy setups to resolve 

individual cells, making it difficult to separate the tightly packed neurons of the head 

ganglion. Additional issues include the segmentation of objects in 3D and the tracking of 

objects that disappear and reappear in the segmentation due to variance in GCaMP 

intensity. Such errors in segmentation then compound with movement of the neurons 

over time to cause errors in tracking each individual neuron over the time frames of a 

very long video, leading to confounding numerical difficulties in properly tracking the 

fluorescence of the neurons over time.  

For these reasons, fully-automated analytical methods have thus far not been used 

for data analysis, and the proper annotation and analysis of these volumetric videos 

continues to rely on extensive and exhaustive hand correction. The logistical burden of 

this manual correction, particularly for long videos, leads the in-depth analysis of large 

numbers of individuals to be impracticable. Further, it is possible that manual correction 

introduces unwanted subjectivity into the data gathered, leading to potentially inaccurate 

calcium traces if, for example, a manual observer were to correct a segmentation to favor 

the brightest sections of a neuron with dimming activity. 

For these reasons, we aim to design an algorithm that eliminates as much as 

possible this need for manual curation. It must of course also be high in accuracy, run in 

Table 4.1: Publications on Whole Ganglion Imaging, illustrating the types of 

microscopy, the diversity in imaging conditions, and the number of neurons and worms 

imaged. Table reproduced from Cho et al3. 
Lead Investigator Freely-

behaving? 
Microscopy 
Setup 

Worms 
Anesthetized? 

# neurons 
observed 

# worms 
reported 

Edward S Boyden 
& Alipasha Viziri4 

No Light-field 
Microscopy 

Partial 74 1 

Manuel Zimmer & 
Alipasha Viziri8 

No Two-photon with 
sculpted light 

Partial ~99 5 

Manuel Zimmer5 No Spinning-disc 
confocal 

Partial 107-131 5 

Andrew M Leifer14 Yes Spinning-disc 
confocal 

No 56-77 4 

Aravinthan DT 
Samuel17 

Yes Spinning-disc 
Confocal 

No 26-84 5 (1 control) 
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reasonable time, and, for a given set of imaging conditions, require no adjustment of 

parameters.  

4.1.2 Goals of this Work 

To address the technical limitations impeding large-scale functional neuronal 

studies, I set out to develop a segmentation, tracking, and post-processing pipeline 

capable of automatically processing arbitrarily-long, volumetric videos of C. elegans 

individuals labeled in all neurons by GCaMP. This pipeline was designed to require little 

to no manual correction, take at most a few hours to run, and have an accuracy 

comparable to hand-curation, with no need to re-adjust parameters between individual 

experiments. As an initial step, for comparison, we requested published, hand-curated 

data from the laboratory of Manuel Zimmer, using it as the baseline for our pipeline119. 

This data was automatically segmented and tracked, but required extensive hand-curation 

over the course days to achieve sufficient accuracy 

Once the pipeline was established on the videos provided, we sought to use the 

hand-curated data provided to us to show that the pipeline extracted the same cell traces 

and reached the same conclusions, but with a procedure that at most a few hours to run no 

hand-correction. We were able to do this, generating a pipeline that was able to process 

the videos in 150 minutes each, and for which replicating the analysis seem previously in 

Kato et al. produces comparable results. 

With that in hand, we sought to demonstrate that it was possible to use this 

pipeline to analyze a much larger number of worms than in previous studies. By imaging 

a large number of worms of the same strain ourselves, I then apply the pipeline to videos 

produced in our own lab, analyzing a 16 additional worms, demonstrating the extraction 

of whole worm scale neural activity for a large number of worms. We show that many of 

these worms undergo a cyclical rhythm in neural activity similar to Kato et al.119, with a 

period of roughly 36 s. We anticipate the pipeline herein to enable a wide variety of 

previously infeasible large-scale calcium studies. 
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4.2 An Algorithm for Rapid and Accurate Tracking of GCaMP-labeled Neurons 

in C. elegans 

To develop the tracking algorithm, data was obtained from the Zimmer Lab as 

previously discussed. Worms were immobilized with 1mM tetramisole and loaded into a 

microfluidic device69, then imaged for 18 minutes using a spinning disc microscope 

equipped with an EMCCD camera at a frame rate of 2.6-3 Hz at 40x. Each frame 

consisted of 11 or 12 z-slices taken at a spacing of 2 µm. Kato et al. used a region-of-

interest segmentation and greedy tracking, along with extensive hand-correction, to 

generate the hand-curated data—only the final data was used in this work. The strain 

used for imaging with ZIM504 [memEx199; lite-1 (xu-7)]. Here, the lite-1 mutation 

eliminates the usual C. elegans sensory response to high-frequency light131—necessary 

for fluorescent functional imaging—and memEx199 is Ex[Punc-31::NLSGCaMP5k; 

Punc-122::gfp] where the former is the pan-neuronal nuclear-localized GCaMP5 and the 

latter is a co-injection marker.  Further details on this procedure may be found in the 

relevant paper, but I do not focus on it here119. 

After initial algorithm design, the algorithm was first verified by both by our own 

hand-annotation and by careful comparison with the previous hand-curated date. The 

algorithm was then used on 16 of our own videos, taken on the same strain but using agar 

pad, demonstrating our ability to rapidly and effectively process a large number of 

calcium imaging videos. 

4.2.1 Algorithm Design 

 The overall algorithm was divided into 3 stages: 3D Segmentation to identify 

neurons, tracking to identify neurons over the course of a long video, and post-processing 

to mitigate any errors that might remain.  

 Figure 4.1 shows an example frame of the video. 
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Figure 4.1 Representative maximal Z-projection of a single frame from one of the 

calcium imaging videos. Left: The original Z-projection. Right: The same frame after 

thresholding (for visualization). 
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3D Segmentation 

 Each 2D slice of the videos was filtered by a Laplacian of Gaussian filter with a 

filter size of 20 and a standard deviation of 2 and thresholded to select all pixels with a 

value lower than -0.005. The 2D z-slices of each timestep were then combined into a 

single 3D volumetric image and separated into blobs. The blobs were inspected for those 

with a size greater than a preset number of voxels (125). Those greater than this size were 

locally re-thresholded via a binary threshold search until all objects were below the given 

size. If no such separation was possible, the best separation was kept, including the 

original object if no separation was possible—as was the case occasionally when a cell 

did appear as greater than 125 voxels in size. Objects less than 20 voxels in size were 

discarded. 

This segmentation method was chosen after consideration experimentation and 

examination of previously developed cell segmentation techniques. While the neuronal 

nuclei labeled by the GCaMP were roughly elliptical, neither a circular nor elliptical 

Hough transform132, 133 did a satisfactory job of detecting the objects, obviously missing a 

large number of neurons in the image while generating many spurious false positives. 

While manual inspection of the image suggested that standard filters and techniques 

would be sufficient, none of the standard approaches—local thresholding such as in 

Chapter 1, edge detection with morphological closure, or second-derivative filters like the 

Laplacian of Gaussian—were satisfactory, since all were unable to distinguish two 

merged objects that were in about the same location. 
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Figure 4.2 Illustration of the Segmentation Procedure. In Step 2, the second and third 

image shows what was originally a single blob after initial thresholding. The fourth 

and fifth image shows what are now two. The fifth image presents a side-view of the 

final separation, showing that these are two distinct objects in the Z-plane. The 

centroids of the detected blobs are shown as red dots.  
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The usual solution to this, a localized watershed transform based on the distance 

transform, was tested but was not empirically as successful as repeatedly re-thresholding 

the object based on the size criterion, dealing poorly with neurons that were not roughly 

circular. While a relatively blunt and slow method, repeated rethresholding performs very 

well, likely because it takes intensity into account—a watershed-based separation would 

have difficulty with a nearly spherical combination of objects such as in part 2 of Figure 

4.2. Separating objects based on other parameters like solidity were considered but 

discarded when they did not significantly improve results and substantially increased 

runtime. A completely separate convolutional neural net approach had also been used to 

segment the image, but was discarded when it was discovered that this separation 

approach worked better. 

 With a method for separating merged objects in place, it was judged not terribly 

important empirically which choice of segmentation filter was used—Laplacian of 

Gaussian was chosen as a natural choice for this kind of problem, and also for producing 

the smoothest nuclei. Parameters were chosen primarily by manual selection, though the 

maximal size of the objects was chosen by examining a histogram of object sizes for 

objects that were deemed correct. It is worth noting that under constant imaging 

conditions, the level of GCaMP would be consistent between animals and these 

parameters would not change much. 

 Figure 4.3 shows the result of some example segmentations. 
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Figure 4.3 Three example segmentations of different frames from the same video, 

displayed as maximum Z-projections. The red dots indicate the X-Y location of 

individual cells identified by the segmentation. Note the need to separate merged 

objects, and the relative efficacy of the re-thresholding procedure at doing so. 



 107 

Tracking with Point Set Registration 

 With the segmentation in hand, we considered it likely that a standard greedy 

tracking algorithm, using the Hungarian algorithm134 or auction algorithm135 to match 

points from frame to frame, might work tolerably well under these circumstances, since 

the videos from Zimmer involved heavily confined worms. We knew, however, that 

greedy tracking algorithm would perform poorly over long videos such as those from 

Kato et al., since any single error in tracking would derail the rest of the data from a 

given neuron—and it was already observed that as the GCaMP signal faded in some 

neurons they’d briefly be lost in the segmentation. Further, with an eye to the future, it 

was considered important to be able to handle substantial motion and distortions of the 

worm, so that it might be possible automatically track worms that were not heavily 

confined, such as already existed in some studies (Table 4.1). 

 With this in mind, we considered a very different approach to the tracking 

problem. A greedy tracking algorithm would consider each neuron in the animal as an 

individual object to be followed, but each neuron is actually a single location embedded 

in a larger deformable object. Given that, the problem of identifying corresponding 3D 

points between different frames of a video strongly resembles another class of deeply-

studied problems: point set registration136-141. 

 Taken most generally, point set registration consists of finding a transformation 

that best converts one set of points into another set of points according to some criterion, 

usually one that corresponds well to a priori knowledge about how the transformation 

should behave. Most applications relate to points gathered from specific locations in a 

real-world object, and a number of algorithms have been introduced over the years to 
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Figure 4.4 Tracking neurons using point set registration, including both the 

consensus approach used (Step 2) and the fallback Gale-Shapley correction for 

duplicate assignments (Steps 3 and 4). In 4D, the numerals 1-4 indicate the first 4 

attempted assignments for the blue point on the center-left. The last assignment, #4, 

was greater than 10 voxels and discarded, leaving the point unassigned. All values 

and drawings in this figure are fictitious for the purposes of illustration. 
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perform either rigid point registration, where the spatial transformation is restricted to be 

isometric137-140, or non-rigid, where some other restriction is applied, and which is more 

suited for deformable objects136, 141. By treating the centroids of the identified neurons as 

individual points, it was found that the non-rigid coherent point drift algorithm could be 

used to reliably match neurons from frame to frame. Coherent point drift was chosen for 

supporting non-rigid registration, an important consideration in the deformable body of 

the worm, as well as being robust against noise and missing points. We used a freely 

available Matlab implementation from the authors, and do not explore the details of the 

algorithm here, but the interested reader may refer to the original paper on coherent point 

drift136. One downside to the use of coherent point drift is that, unlike methods such as 

robust point matching139, it does not guarantee a one-to-one correspondence, which is 

highly desirable for cell tracking. However, it provides non-rigid matching, robustness to 

missing points, and a transformation model for the 3D space in which the points are 

embedded. We discuss mitigation of the downside later in this section. 

Applying point set registration to tracking objects through a video requires some 

adaptation, however. As usually provided, point set registration maps one single set of 

points to another single set, not a large number of point sets to themselves. There are 

three natural solutions to this: 

1. Register each frame to every other frame. Use a consensus approach to 

identifying points in each frame, taking the mapping onto every other frame into 

account. For instance, one could attempt to find the set of point assignments that 

would minimize the number of “mismappings” according to the point set 

registration. 

2. Register each frame to the previous frame. Use the mappings to keep track of 

point assignment over time. 

3. Define a reference frame, and compare all other frames to this frame, use the 

points in the reference frame as absolute identities. 
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We may immediately discard the first method as being impracticable—for a 3000 frame 

video, it would require 8.997 × 106 applications of point set registration—at roughly 0.1 

s each, this would take 10.5 days. Methods 2 and 3 each have significant downsides. 

Matching each frame to the previous frame reintroduces one of the major downsides of 

greedy frame-by-frame tracking: the tendency towards accumulating errors over time as 

each transient misassignment permanently damages the accuracy of the tracking. 

However, matching each frame to a single reference frame discards all temporal 

information present in the video. While this may be desirable in cases where the 

positional correlation between adjacent frames is weak, that is not the case in the videos 

provided, where each frame of the video strongly resembles the previous one. 

 I found that a mixed approach, using a consensus of approaches 2 and 3, worked 

best. For any given frame (except the reference frame and first frame), the frame was 

compared to both the reference frame and the frame immediately previous. Whenever the 

two point set registrations disagreed about the identity of a given neuron, precedence was 

given to whichever one produced the least error—that is, the lowest distance between the 

transformed point and the actual point to which the mapping was attempted. Empirically, 

this gave a good combination of the advantages of both approaches, serving to limit the 

number of neuron assignments that don’t make sense given the previous frame, while 

also preventing long-term drift in neuron identity. 

 It is possible to imagine other, more complex approaches, for example using a 

consensus of regularly spaced reference frames, or of a number of frames immediately 

around the given frame, weighting by temporal proximity. However, neither of those 

approaches generated appeared to generate accuracy improvements relative to the given 

approach, and were discarded as needlessly complex. 

 One question that this approach engenders regards the choice of reference frame. 

A number of potential approaches suggest themselves, but I settled on the most 

conservative approach: choosing the frame with the lowest number of putative neurons. 
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Since this anchors the number of neurons the algorithm expects to find, this effectively 

places the least burden on the segmentation to identify all neurons in the image and on 

the tracking algorithm to recognize missing points, at the obvious cost of decreasing the 

number of neural traces identified. It is also possible that a reference frame with more 

neurons would be more informative about the geometric arrangement of neurons in a 

given frame.  

 As mentioned, coherent point drift does not produce one-to-one correspondences 

between frames. This is problematic, as tracking neurons and extracting calcium traces is 

dependent on the expectation that any given neuron is only found once per frame. This is 

resolved by using a greedy distance-based tracking as a fallback. Here we use a custom-

modified Gale-Shapley algorithm142 rather than the Hungarian algorithm that would be 

more typical, because we do not want the algorithm to be too concerned with decreasing 

the distance of a particular far-lying point (that may be an outlier or not in the other set) 

at the expense of other matches. 

1. Examine the correspondence generated by the registration procedure for duplicate 

assignment—points that have been assigned to the same original point in the 

reference frame. For each set, preserve only the correspondence for the point with 

the lowest distance to the transformed point predicted by coherent point drift; 

discard the rest. 

2. Compile a list of orphan points, points in the reference frame and current frame 

with no partner. For each possible pairing between the first and second group, 

calculate the distance between the point in the current frame and the transformed 

point from the reference frame predicted by coherent point drift. 

Note: this is an expensive calculation, but for all the videos examined, 

only takes place on a few points per frame. Calculation time is thus 

negligible. 

3. Perform modified Gale-Shapley matching between the two groups: 
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a. Repeatedly iterate through the list of unmatched points in the reference 

frame, pairing each to the lowest distance point in the current frame, 

recording the distance. If this distance is greater than 10 voxels, ignore this 

pairing. 

i. If this lowest distance point is already taken by another reference 

point, then transfer it to this point if the distance to this point is 

lower than the distance to the other reference point; otherwise, 

examine the next lowest distance point. Repeat until a pairing is 

made or the lowest distance is greater than 10 voxels. 

ii. Terminate iteration when the list of pairings is unchanged after an 

iteration. Gale-Shapley provides the guarantee that this will occur. 

iii. Note: the 10-voxel limitation prevents matching of points over 

implausible distances, since neurons never move more than this 

distance in one frame. The termination condition is necessary as 

this matching no longer guarantees that all points will find 

partners, the usual ending condition for Gale-Shapley. It is likely 

that another registration algorithm, particular one that exploits the 

use of symmetric Euclidean distances here, would be faster, but the 

time cost of this matching is negligible; this also has the advantage 

of being reusable in 4.2.2, where the distances are not Euclidean. 

Post-processing and Principal Component Pursuit for Removal of Sparse Noise 

 After tracking and segmentation, it is necessary to perform additional post-

processing, both to correct errors in the previous steps, and to adjust for noise intrinsic to 

the data collection. Some adjustments are made: 

1. Neurons that had a variance in position of more than 800 voxels2 were 

removed from the dataset. This was on the observation that in the videos 

given, no single neuron ever moved more than about 10 pixels per frame, but 
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that a few erroneously tracked neurons moved far more than this. This is 

specific to this set of videos, of course, and would not be admissible for a 

much more set of images. 

At this stage, the calcium traces corresponding to the activity of each neuron are 

calculated. The raw calcium signal, F, from any given neuron in a frame is calculated by 

taking the average voxel intensity over all voxels in a segmented neuron. This is the 

standard approach in the literature119, though it is possible to imagine that a different 

approach—e.g. taking the average of the top 20 voxels—would be less sensitive to the 

details of segmentation; empirically, it does not seem to matter much. The relative 

calcium signal, ∆𝐹/𝐹, is then calculated, where 𝐹 is the average signal over all time 

frames and ∆𝐹 is the difference from this average in a given frame. As these are 

unstimulated neurons, 𝐹 is the typical measure used to estimate the baseline intensity 

level, though it is possible to imagine more accurate measures. Additional corrections are 

then made:  

2. Missing point interpolation and median filtering. Neither coherent point drift 

nor the fallback tracking guarantees that each putative neuron from the 

reference frame will be found in every frame, resulting in a small number of 

missing neurons in some frames. The ∆𝐹/𝐹 signal of these missing points is 

estimated by pchip (shape-preserving piecewise cubic) interpolation from the 

rest of the time trace, after applying a 3-point median filter. 

3. Principal Component Pursuit is applied to the entire dataset to reduce sparse 

noise115. Final data are shown in Figure 4.5. 

a. This carries the same assumptions as in Chapter 3, i.e. that the data is 

low rank and the noise is sparse. While the latter is almost certainly 

true, the first is debatable, especially given that each “observation” 

here is a different neuron, rather than different measurements of the 
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same neuron. Implicitly, this assumes strong correlations between 

neuron behavior. Empirically, this is true, and PCP performs quite well 

at conditioning the data (Fig. 4.6b-c), but this has the potential to 

obscure sharp single neuron behavior. 

b. With a reimplementation of the algorithm, PCP can be made robust to 

missing points as well as sparse noise143. This would obviate #2 above, 

though #2 would still be useful if PCP were not used. 
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Figure 4.5 Sample calcium imaging data from a single video (labeled Video B based 

on the chronologically of when the recording was taken). Part A shows a heatmap of 

all 138 cells detected by the algorithm, in arbitrary order. The high degree of 

correlation between the activities of some neurons is evident. Part B shows two 

representative cell traces, the first of an active neuron and the second of an inactive 

neuron. Part C shows these same data traces without conditioning by PCP—the data 

contains considerably more sparse noise, particularly in the case of the inactive 

neuron. The magnitude of the peaks in the active neuron is reduced by PCP, however. 

Note that the y-axis between part b and c differs for cell #73. 
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Accuracy by Hand-Annotation 

  In order to evaluate formally the accuracy of the segmentation, randomly-

selected frames of a video, segmented by the algorithm, were evaluated by eye. It was 

immediately observed that it was difficult to reliably count how many neurons the 

algorithm was “failing” to segment, as the question was too subjective and dependent on 

the observer queried. It was, however, somewhat possible to observe errors the 

segmentation made in separating merged objects, which remained a serious concern. 

Based on a detailed count of 10 of the sampled frames, an average of 10.5±2.67 (SD) 

cells, or 8.6±2.2% of the cells, were judged to be in fact more than one cell, clearly 

illustrating that the problem of separating merged objects is not yet entirely solved. It is 

important to note, however, that this is a problem that also plagues even hand-annotated 

data sets, which still rely on some form of automated segmentation. 

In order to estimate the accuracy of the tracking algorithm by direct manual 

curation, all of the tracked cells from a single video were examined for tracking errors, 

using a custom-coded GUI, by Stellina Lee in our lab. Attention was not paid to the 

quality of segmentation, as that had already been addressed; the only question was 

whether or not each frame of the cells extracted from the tracking algorithm was accurate 

or not. As a first step, 7 cells that were missing from large segments of the video were 

removed, as these were clearly due to issues with the segmentation. The tracking 

algorithm performed well on the remaining cells, with only 3.3% of time frames judged 

to be incorrect. Of this 3.3%, 1.0% occurred when the tracker failed to properly follow a 

cell that was, in fact, present. The remaining 2.3% consisted of actual misassignments. Of 
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Figure 4.6 Example segmented and filtered image, illustrating where most of the 

segmentation errors occur (red and green boxes). Based on my manual curation, 

nearly all of the segmentation errors occur because of difficult separating merged cells 

in the central nerve ring (red box) and in accurately resolving neurons in the anterior 

mid-body (green box). It is worth noting that these are difficult problems to solve even 

by eye, and are not unique to this algorithm. Even manual observers would have 

difficulty segmenting these areas exactly. 
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these misassignments, 0.31% involved a cell that was not segmented on this particular 

frame, and could perhaps be blamed on the segmentation. 

As illustrated in Figure 4.7, detailed examination reveals that most of the 

misassignments still occur in only a small subset of cells; removing 8 of these drops the 

misassignment percentage to 0.57%. Few of these were removed by the initial stages of 

post-processing, indicating that a greater effort can still be made to remove problematic 

cells. 

Algorithm Speed and Cost 

The combined process takes about 2 hours on the videos provided by Zimmer 

(150-170 x 512 pixels, 11-12 Z-slices, 2800-3250 frames) with a i7-4770k processor 

(3.50 GHz) and 16 GB RAM, and no optimization has thus far been attempted. Figure 4.8 

shows a detailed breakdown of the time cost of this algorithm on one of the videos from 

Kato et al. and for one of the videos we collected ourselves (see Section 4.3). This 

breakdown is representative of all of the videos collected. 

 

 
Figure 4.7 Frequency histogram of the misassignment error rate per cell, illustrating 

that the majority of errors occur in only a few cells. 
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As can be seen, no one step is particularly dominating in terms of computation 

time. If F is the number of frames in a given video and V is the number of voxels in a 

frame (Width*Height*Depth), then the theoretical time complexities for each step are: 

1) O(VF) for file loading and segmentation. (Dominant cost: Convolution and 

reading parts of the image file from disk) 

2) O(VF) for Blob Extraction and Splitting. (Dominant cost: Blob Extraction) 

3) O(MF) for tracking, where M is the number of putative neurons in the 

reference frame. (Dominant Cost: Coherent Point Drift) 

4) ~O(FN) for PCP, where N is the number of iterations needed to complete 

PCP, which is directly related to the prevalent level of sparse noise in the 

dataset. This is an extremely rough estimate, and N itself varies by as much as 

a factor of 3 in our testing for each class of video (ranging from roughly 2500 

to 7500 and 200 to 500 for Kato et al. video and our videos, respectively) but 

cannot be predicted a priori. (Dominant cost: Singular Value Thresholding 

within PCP). 

In steps 2 and 3, the dominant cost is related to a Matlab built-in or imported 

algorithm which is already heavily optimized and difficult to improve on. The efficiency 

of step 1 is partially controlled by the efficiency of reading frames of the image from 

disk, which the built-in Matlab function is not particular efficient at, and seems to 

deteriorate as the file size increases into the multi-gigabyte range. As Step 1 is overall the 

shortest step, the cost-benefit of working to improve this file read-in is likely not worth it, 

especially as the built in convolution is heavily optimized. 

Step 4, Principal Component Pursuit, has the most potential for improvements in 

speed. Substantially speedier versions of PCP already exist143-145, relying on fundamental 

algorithm improvements, improvements to optimization, and aggressive use of 

optimization. It is likely that a choice of a substantially more efficient algorithm could 

render the time cost of step 4 unimportant compared to the other steps. 
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Figure 4.8 Time cost for each stage of the algorithm, for a representative video from 

Kato et al. and taken by our own lab (see Section 4.3). These represent the total time 

for each step divided by the number of frames in the video being analyzed (3021 for 

the Kato et al. video and 357 for ours), representing 114 minutes and 6.3 minutes 

total, respectively. Frame dimensionality was 148 x 512 x 12 for the former and 422 x 

336 x 10 for the latter, with 147 and 36 putative cells identified, respectively.  
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4.2.2 Validation using Hand-Curated Data 

 Making a direct comparison between the data generated by my analysis and the 

previous analysis by Kato et al. cannot be a simple matter of examining individual traces 

for equivalency between the two sets of data—with different segmentation approaches 

used, the chance of two traces being identical is effectively zero, even when both traces 

measure the same cell. It must further be noted that while Zimmer’s data is used here as a 

baseline for comparison, it cannot be assumed to be perfectly accurate, even with manual 

curation, as it still reliant on the quality of the segmentation used and the manual curation 

itself. 

An Automated Method for Finding Similar Cells in Two Separate Analyses 

 From a technical standpoint, what we are most interested in is that the same cells 

are being found, and that the same general calcium activity traces are being measured. 

While the apparent accuracy of the algorithm with regards to cell selection was been 

verified by manual inspection in the previous section, we are still interested in the broad 

similarity of our data to the published data.  

In order to identify the same cells in both data sets, we realize that we are once 

again facing a one-to-one matching problem, suitable for solution with a registration 

algorithm such as Gale-Shapley142, almost exactly analogous to the fallback greedy 

tracking used in the tracking methodology above. It only remains to choose an 

appropriate distance measurement between cells in Zimmer’s analysis and ours. Since we 

know the coordinates of the centroids of both our cells and Zimmer’s cells, it is tempting 

to use the simple Euclidean distance—but this would make it difficult to disambiguate 

cells that are set very close to each other, especially given the focus of Zimmer’s 

segmentation om relatively large regions of interest. Instead we choose a mixed distance: 

(1 − 𝑅) + 𝑑/𝜆 

Where R is the product-mean correlation coefficient (PMCC) between the data traces 

associated with a given cell, d is the Euclidean distance, and 𝜆 is an arbitrary parameter 
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controlling their relative importance. This is of course no different in practice from the 

more usual 𝜆𝑅 + 𝑑, but this formulation implies a useful way to think about lambda. 

Specifically, since 1 − 𝑅 is at most 2 in the worst case where 𝑅 = −1, then the d term is 

absolutely dominating if 𝑑 ≥ 2𝜆. In practice, even 𝑑 ≥ 𝜆/2 is more than sufficient to 

make d the dominant term in this distance. As a rule of thumb, then, we can set 𝜆 = 2𝑑, 

where d is the roughly the distance where we stop believing two cells are the same, no 

matter how similar their calcium traces. This is an important consideration, since distant 

cells in both datasets, particularly those that correspond to symmetric neurons of the same 

type, often show very strong correlations in their activity, as can be observed in both our 

and Zimmer’s analysis (personal communication, Manuel Zimmer). In our case, we set 

𝜆 = 100, though this is likely an overestimate, since the average diameter of cell in 

voxels is only at most 10. As we shall see, this does not seem to matter much. 

It is important to note that the correlation distance 1 − 𝑅 does not satisfy the 

triangle inequality, and hence neither does the mixed distance; however, this does not 

matter for the modified Gale-Shapley approach taken here, which matches that used in 

the tracking above, except that it does not have a maximal distance beyond which 

matches are not made. The choice of the PMCC as a measure of similarity between 

calcium traces is carefully done; it serves as an intuitive measure of similarity while 

remaining insensitive to differences in relative magnitude between the two traces, 

something which would be very sensitive to the exact, but unimportant details of 

segmentation. 

Figure 4.9 illustrates the results of applying this approach to one of the five 

videos. The median PMCC between matched cells for all five videos ranged from 0.68 to 

0.76, with a median distance between 2.4 and 7.8 voxels. Empirically, PMCCs over about 

0.6 were reliable matches, provided that the cells in question were within 30 voxels of 

each other. A majority of the cells, 59.7%, fit this criterion, with 75.2 % of cells with a 

distance criterion < 0.7. 
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Figure 4.9 Example cell pairings between the two analyses, with Zimmer’s analysis 

on the left and ours on the right. Part A shows an example of a PMCC that is nearly 1, 

one that is around 0.8, and one that is around 0.6. All three pairs of traces look 

broadly similar, though with some distortions likely due to differences in 

segmentation. Part B shows summary pairing data for a representative video. 
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PCA and Replication of Previous Results 

 In order to fully validate the developed algorithm from a scientific perspective, it 

would be ideal to replicate the conclusions of Kato et al. as much as possible. The 

centerpiece of their analysis was a temporal principal component analysis (PCA) which 

redimensionalized the activity of the worm ganglion into a three-dimensional manifold. 

By using the activity of key motor neurons as indicators for forward and backward worm 

movement, different parts of this manifold could be shown to correspond to different 

activity states, supporting a hypothesis that the entire worm brain is involved in different 

states of motor planning. 

 In order to sufficiently validate our results relative to the original analysis in Kato 

et al., we consider it necessary to replicate the salient points of the temporal PCA 

analysis, illustrating that the 3D manifold generated has broadly the same features and 

shape, and that different parts of the manifold still correspond to different activity states. 

In this, we may use the same activity states identified in Kato et al. and even the same 

cell IDs, using the matching algorithm from the previous section to identify what are 

putatively the same neurons. To summarize the procedure, which was matched as 

carefully as possible to that used by Kato et al.: 

1) Remove key high-responding and erratic sensor neurons from the data set 

('BAGL' 'BAGR' 'AQR' 'URXL' 'URXR' 'AVFL' 'AVFR' 'ASKL' 'ASKR' 

'ALA' 'IL2VR' 'IL2L'). 

2) Normalize all traces to their highest absolute magnitude. 

3) Take the time derivative by using Total Variation Denoising146, using 

manually chosen alphas matching those chosen by Kato et al. 

4) Perform PCA, treating each time point as an observation and each neuron as a 

dimension. 

5) After redimensionalizing the data into PCA dimensions, reintegrate each PC 

dimension time course. 
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The movement state of the worm and cell IDs were determined from the Zimmer data, 

with the cell IDs based on finding the match to each given cell ID in the Zimmer using 

the method in the previous section. Figure 4.10 summarizes the results for a single video 

and gives an illustrative comparison with equivalent figures calculated based on the data 

from Kato et al.  



 126 

 
Figure 4.10 A replication of some of the results from Kato et al.5, illustrating the 

similarity that results when using our analysis and theirs. Part A shows an overlay of 

PCA component magnitudes over time for both versions. Part B shows the time trace 

of neural activity in principal component space. Colors show the RISE/FALL states 

identified by Kato et al. for each time point and represent the same time points in both 

traces. Part C shows heatmap plots of the absolute value of the calcium traces in both 

analyses. Each horizontal line is one cell, and the cells are grouped into three groups 

based on whether they have the highest weight in principal component 1, 2, or 3, and 

sorted from highest to lowest weight. The same patterns and cells are evident, though 

this is unfortunately obscured by the differences in relative intensity between the two 

segmentations. 
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Most of the PCA analysis is courtesy of Shivesh Chaudhary, from our lab, though the 

author was involved in planning and interpretation. 

4.3 Imaging and Analysis of a Large Sample-size Set of C. elegans 

In order to demonstrate the applicability of the algorithm to a large sample size 

collection of worms, and to test its use under slightly different imaging conditions. We 

immobilized ZIM504—the same strain as used by Kato et al.—day 1 adults on agar pad 

in 5 mM tetramisole. Using a spinning disc confocal microscope, we then imaged each 

worm for 10 minutes each, at a frame rate of roughly 0.6 Hz, not imaging more than 6 

worms a session to prevent the worms from being on the pad for too long before imaging. 

This protocol was deliberately chosen to be both simple and traditional, to highlight the 

lack of reliance on any particular protocol or technique. This has two downsides: the 

difficulty of getting individuals into an ideal posture for imaging (left or right side 

pressed into the glass), which substantially reduces the number of detectable neurons in 

some animals, and the reliance on a relatively high concentration of paralytic tetramisole 

to ensure smooth imaging. Once videos were obtained, they were run through the 

previous algorithm to extract calcium traces, a process that took only a few hours. 

4.3.1 Results and Preliminary Analysis 

Figure 4.11 shows summary data obtained for 2 of the 16 videos obtained. In this 

case, unlike in 4.2, there is no cell ID or activity state information. Evaluating the 

underlying similarity between the activity of many individual animals is be a topic of 

considerable interest, as it would establish a firm baseline for the global neural activity of 

C. elegans. 



 128 

 

 
Figure 4.11 Best-result calcium traces from two of the individuals imaged on agar 

pad. The top row is shows raw heatmaps of the calcium traces as ∆F/F. The second 

row shows the value of the first principal component over time; the first principal 

component here is calculated in the same way as the last section of 4.2.2, but with no 

application Total Variation Denoising. The last row shows the frequency spectrum of 

this first principal component trace. The presence of two or more low frequency peaks 

is fairly typical, and was seen in 11 of the 16 videos examined. The number of 

neurons detected here is 36 for the left set of figures and 64 for the right set. 
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 By performing much the same PCA analysis as in 4.2.2, except for the use of 

Total Variation Denoising and conducting a Fourier analysis of the time trace of first 

principal component, we see a moderately consistent frequency peak at roughly 

0.03±0.01 (SD) Hz (36±10 s period), present in 11 of 16 of the videos analyzed. 

Unfortunately, we are limited by the low temporal resolution of our current imaging 

approach, which after all only has a maximal resolution of ~1.7 s, as well as the 

limitations of imaging on agar pad rather than microfluidic device, with the result that 

many of the neurons in the videos were obscured by the orientation of the worm, and that 

the intensity traces were occasionally contaminated by Z-shifts in the worm head, which 

increased or decreased the intensity of all neurons simultaneously. In the future, this 

could be resolved straightforwardly by imaging animals on a microfluidic device as in 

Kato et al., or being more selective in the videos chosen for analysis. 

4.4 Discussion 

In this chapter of the thesis, I develop an efficient, fast, and accurate algorithm for 

automatic segmentation and tracking of “whole ganglion” videos in C. elegans. By using 

previously published, hand-curated videos, I demonstrate its accuracy by direct 

annotation, by cell to cell comparison with the previous hand curation, and by substantive 

replication of previous results. This algorithm takes only about 2.5 s to run per 150-170 x 

512 x 11-12 frame, so it is not only easier than the manual annotation, it is also faster, 

and likely more objective in its assessments, making the analysis of whole ganglion 

imaging videos substantially easier. 

While great pains are taken to demonstrate the algorithm’s accuracy and its 

comparability to hand curation, the main value of algorithm lies not in superior accuracy 

or the mere proof of concept for automated tracking, but in its combined labor and time-

saving value in eliminating what is otherwise a multi-day, intensively manually-

supervised process. We illustrate this by applying it to analyze 16 videos, an immediate 
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leap in sample size compared to any previous study, with an overall protocol that takes 

only a few hours of data gathering and a day of processing, giving a glimpse of the 

relatively huge amounts of data waiting just over the horizon. Even with a poorly-refined 

experimental protocol and low temporal resolution, it is already possible to detect a very 

slow ~36 s oscillation in neural activity present in C. elegans. 

Thus, in its current state, despite the limitations described below, the given 

algorithm is sufficient to substantially advance the state of the field, and would serve as a 

valuable tool for future whole brain imaging. With further improvement to resolve the 

issues with segmentation of closely clumped cells, the simultaneous analysis of all of the 

neurons in the head ganglion during sensory stimulus could finally help to untangle the 

difficult to find relationships between interneuron behavior and external stimulus, or 

understand the activity of the C. elegans connectome during poorly understood whole 

brain activity, such as lethargus or learning. It will help to extend our understanding of C. 

elegans neural processing beyond relatively simple and well-defined circuits to the 

nebulous processes that direct the animal as a whole, and also to help elucidate the global 

effect of genetic changes to behavior, or of neuromodulators such as serotonin. It is our 

hope and expectation that this segmentation and tracking algorithm, or a close variant, 

will drastically accelerate the rate of progress in studying large-scale neural activity in C. 

elegans. 

4.4.1 Limitations and Considerations 

 The process outlined in this chapter of the thesis has a number of clear limitations 

which are important to address. There are two major caveats, pertaining not to the 

algorithm itself, but to the limitations of its scope. Firstly, while the algorithm performs 

quite well on immobilized worms such as used in Kato et al. or in the imaging performed 

here, there is considerable interest in imaging freely-behaving worms, embodied in a 

number of already published studies. We have not yet attempted to apply our algorithm to 

a freely-behaving situation, but there is reason to believe that adjustment would be 
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necessary, given built-in aspects of the algorithm that rely on a relatively immobile 

worm. That being said, our experience with some of our own calcium imaging videos 

with more mobile worms offers reason to believe that the tracking algorithm is robust to 

significant movement (Fig. 4.12 and 4.13). 

 Secondly, segmentation and tracking only addresses one of the two most difficult 

steps of calcium video analysis. While the analysis algorithm provided here provides a 

fast way of generating calcium traces for a large number of videos, providing 

considerable fodder for large-scale, neuron identity-independent analysis, many 
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Figure 4.12 Tracked neuron identities for segmented frames of a single calcium 

imaging video in which the individual moved significantly. Neuron identities were 

tracked reasonably well, though clear errors show where improvement is still 

possible. This is frame 42 and 85. 
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Figure 4.13 (Continued from 4.12) Tracked neuron identities for segmented frames of 

a single calcium imaging video in which the individual moved significantly. Neuron 

identities were tracked reasonably well, though clear errors show where improvement 

is still possible. This is frame 186 and 285. 
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biological questions are reliant on knowing the precise identities of the neurons found. 

Considerable attempts have been made at automating the identification of individual 

neurons, including by this author, but substantial variation in neural morphology between 

worms even of the same genotype have greatly impeded efforts in this regard. However, 

two separate potential solutions to this problem present themselves. On the one hand, 

long-ongoing efforts to generate worm strains with a combinatorial pattern of genetically-

encoded fluorescence in each neuron, suitable for identification use, may finally reach the 

stage of widespread usability, experimentally solving a problem that has not been solved 

algorithmically. Alternatively, by imaging a large number of different strains, each 

labeled pan-neuronally by one color while labeled in specific landmark neurons by a 

different color, it might be possible to build a database of many different worm neural 

landscapes, each with key neurons identified. This would be suitable for training a 

machine learning algorithm to learn to identify neurons of interest. 

 Outside of these limitations, there are also a number of considerations in the 

current algorithmic pipeline that should likely be addressed in the future. For instance, 

the separation of merged objects used here is no longer state of the art in the field; the 

laboratory of Yuichi Iino has demonstrated that a more refined separation of merged 

objects with isointensity surfaces performs well, almost certainly better than the blunt re-

thresholding used here147. It is also possible that a watershed transform using an intensity-

aware distance transform would also perform better. In videos where the frame-to-frame 

variation is low, it is also possible that using adjacent frames to help inform a 

segmentation would have value. 

A number of technical improvements can be also made in the tracker; some of the 

parameters were set empirically, but it is possible that a proper parameter search might 

find a more optimal set of parameters. The choice of the frame with the minimum number 

of neurons for a reference frame places the least pressure on the segmentation, but is 

probably not the optimal choice of reference frame—a better automated way to choose 
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one might be found. Finally, rather than interpolating over missing points and using PCP, 

we could implement a version of PCP that directly handles missing points, simplifying 

and likely improving the approach143. 

` The field as a whole is fast-moving, and it is likely that aspects of the work here 

have already been duplicated or are being improved upon elsewhere. Moving forward, it 

will be necessary to sample the literature and compile the best-performing, best-practice 

versions of the techniques embodied here, rather than being bound to the specifics of 

algorithmic implementation. Nonetheless, we believe the successes demonstrated here 

will serve as an impetus to jolt the field forward.  
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CHAPTER 5 

THESIS CONTRIBUTIONS AND FUTURE WORK 

5.1 Thesis Contributions 

 This thesis set out to advance the state of the field in the use of image processing 

and computation in C. elegans research, particularly as it applies to high-throughput 

imaging and neuroimaging. As the questions asked by the field grow in subtlety and 

ambition, technical advancement in both imaging and computation have kept pace, 

awaiting only adaptation to the biological domain. Building on the techniques, 

equipment, and designs of previous researchers in this lab, this thesis sought to advance 

both the breadth and depth of its applicability to the questions of interest in the field, both 

by broadening its usability and by advancing the methodological state of the art. 

 We began in Chapter 2 by examining the existing high-throughput microfluidic 

imaging pipeline and addressing outstanding issues in its performance and methodology. 

To address the problem of imaging particularly dim markers in the presence of 

confounding droplets, and to address the problems the original segmentation approach 

had with overfitting a particular set of imaging conditions, an alternate, simpler 

segmentation approach was developed, and a new set of quantitative features was chosen. 

To demonstrate the value of this new approach, and to illustrate the applicability of high-

throughput imaging to candidate gene studies in addition to forward genetics, we 

characterized a pre-selected set of dim synaptic mutants, demonstrating the ability to 

repeat manual characterization and go beyond, by demonstrating numerically the 

existence of epistasis between two synaptic mutants where this could not be determined 

manually. As a further demonstration of the scope of the segmentation approach, we 

applied the general approach to two novel situations, developing D. melanogaster 

embryos and arrays of Jurkat T cells, illustrating the ability of a filter and clustering 

approach to generate biologically useful results in a number of different situations. 
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 In Chapter 3, we use the techniques and approach developed in Chapter 2 to 

further extend the reach of our high-throughput imaging technique to QTL mapping of 

synaptic morphology, with the two-fold goal of demonstrating the applicability of the 

technique to quantitative genetics, and to demonstrate the ability of the technique, 

coupled with focused algorithm and methodological development, to take on what is 

otherwise a technically infeasible task, the QTL mapping of fluorescently-labeled 

synapses within C. elegans. Here the technical difficulty was also two-fold, lying first in 

the difficulty of generating the large number of RILs containing the requisite fluorescent 

marker, and in the imaging of the micron-level synapses for a large number of individuals 

for a large number of strains. We overcome the first difficulty by adopting a novel 

process of imaging F1 crosses instead of the fully-integrated strains. This introduces a 

number of technical difficulties which we overcome with the use of the high-throughput 

imaging pipeline, which also takes care of the second difficulty, after additional 

modifications to aid in quantitative accuracy. By examining 47 RILs between the strains 

N2 and CB4856, crossed with the marker genotype wyIs92, we are able to identify a 

putative QTL on chromosome IV (though not at the significant level) and begin to verify 

it by studying introgression lines containing the putative QTL region. 

 Finally, in Chapter 4, we turn our attention from structural imaging to functional 

imaging, spurred by the development of new microscopy techniques that enable the so-

called whole brain imaging of the C. elegans head ganglion, enabling the ~3 Hz 

monitoring of many neurons simultaneously in a bid to discern large scale functional 

patterns in C. elegans neural behavior. While a number of labs have performed this kind 

of whole brain imaging4, 5, 8, 14, 17, the analysis and scientific payoff of this data collection 

has been bottlenecked by the processing and quantification of the 3D videos generated—

segmentation and tracking of neurons typically requires days of manual hand correction 

and curation before the data is usable. We set out to design an improved segmentation 

and tracking algorithm capable of generating results comparable to manual curation 
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without the heavy investment of time and effort, enabling the processing of whole brain 

videos on a large scale. We achieve this with a combination of a simple filter, a 

rethresholding approach to separate closely crowded cells, coherent point drift for 

tracking136, and post-processing that includes principal component pursuit115. With this, 

we are able to replicate manually curated results on published calcium imaging videos, as 

well as perform analyses of videos taken by our lab. 

 In summary, this thesis takes the microfluidic and automation techniques in this 

lab and extends them into new domains by developing new algorithmic and 

methodological approaches. It is our hope that the techniques developed in this thesis will 

allow the detailed future interrogation of the C. elegans nervous system, both structurally 

and functionally, and of the detailed relationship between the C. elegans genotype and 

phenotype. More generally, we hope that the algorithmic approaches embodied here spur 

both continued innovation and a new generation of experimental studies. 

5.2 Future Directions 

 In this section I outline a limited selection of potential future work elaborating or 

continuing the work in this thesis. I focus here on the most obvious experimental 

continuations of the work done, having discussed much of the potential technical 

improvements in the respective chapters. 

5.2.1 Reverse Genetics on Synaptic Mutations 

 The successful and clear demonstration of epistasis between synaptic mutations 

demonstrated in Chapter 2 served as an illustration of the value of quantitative 

phenotyping in extracting difficult to characterize properties of subtle phenotypes, but as 

a scientific conclusion it is relatively limited. It is of some interest that the genes unc-104 

and jkk-1 are epistatically linked, but this observation would only form a very minor part 

of the much greater patchwork that controls synaptic regulation and development. 

 One immediate possibility that emerges from the work in Chapter 2 is simply the 

direct evaluation of a large number of known synaptic mutants. In each case there are 
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potential subtleties in the phenotypic that may lie undiscovered, or may have previously 

only been suspected by manual observers. The scope of manual description is usually 

limited—synapses are brighter, or dimmer, or larger, or smaller—but a full study with a 

wide range of carefully chosen features would likely reveal additional subtleties, 

subtleties that could help illuminate the exact role of specific genes if they phenocopy 

another, better understood gene. 

The work in Chapter 2 also points the way forward to a potentially much deeper 

study of gene-gene interactions as they pertain to synaptic morphology and development. 

Many synaptic development genes are known already, but their exact role and interaction 

with each other is often poorly understood, if it is understood at all. A detailed study of 

the phenotypic outcomes of combining numerous pairs of different synaptic mutants 

could reveal much in the way of unexpected or unknown interactions between different 

genes, or could help rule out suspected interactions. The inferential value connecting 

epistasis to detailed genetic pathways is limited, of course, but the such a study could be 

conducted on a very large scale using the existing techniques, perhaps even using genes 

whose influence on the synaptic domain is only suspected. 

 One last possibility would be to expand the scope of the synapses studied beyond 

a single neuron to multiple or numerous neurons. Analogous to the situation in whole 

brain imaging, pan-synaptic strains are being developed that distinctly label individuals 

synapses throughout the whole worm, with markers where the expression level is 

controlled by a precise gene editing technique like CRISPR/CAS-9, preventing the 

overexpression and washout of individual synapses often seen in densely packed regions 

like the head ganglion. The study of synaptic mutants on a larger number of neurons, 

instead of the one neuron where they were often originally characterized, has the 

potential to illustrate the very poorly differences in synaptic regulation and gene 

expression between the different neurons of C. elegans. 

5.2.2 Biological Conclusions from the QTL Analysis 
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 The chapter for which the logical continuation is the clearest is Chapter 3. While 

this thesis has demonstrated that QTL mapping on fluorescent synaptic markers is 

possible with the given methodology, much remains to be said about the biological 

consequences of what has been found. A putative QTL is not the same as a verified 

synaptic morphology-affecting gene, and much work remains to be done to achieve a full 

verification, including the further identification of the likely genetic region involved and 

a study of genetic knockouts or mutants of probable genes in the area to characterize 

whether or not they have the expected phenotypes. Additional work would have to 

follow, characterizing the exact phenotypic effect, its potential interactions with other 

known genes and, if possible, its exact role and function. Likely the techniques from 

Chapter 2 would have a role to play, but the mainstay here is traditional biological work. 

 The implications of what has been found to what can be learned about synaptic 

morphology from studies on N2 would heavily depend on what exactly has been found. It 

is intriguing that the laboratory strains would carry a morphological difference in 

synapses when compared with wild isolates, but it is currently an open question why this 

occurred, or what effect it would have on studies in N2. Most excitingly, this is exactly 

the kind of synaptic variation that may play a role in certain kinds of human disease97-101. 

 Further out in the future is the potential of carrying out this kind of QTL analysis 

on other phenotypes or other wild isolates. That would require another study on at least 

the same scale as this, with a methodology hopefully improved by the experiences of this 

one, as laid out in the conclusions of Chapter 3. This thesis is likely not the final word on 

the application of QTL to fluorescent markers. 

5.2.3 Calcium Imaging of the C. elegans Head Ganglion under Stimulus or in 

Mutants 

 With the advent of efficient large-sample size whole ganglion functional imaging 

comes a whole host of potential questions for the field to address. The vast majority of 

questions about neural function that have been asked about individual neurons or small 
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groups of neurons has a valid, unanswered analogue when applied to the neural 

connectome of C. elegans as a whole. 

 Focusing on the studies that are within ready reach of the methodology as already 

developed, it would be very straightforward with the current setup to study the effect of 

different chemical stimulants on C. elegans neural behavior and activity—indeed, the 

study by Kato et al. has already investigated to some degree the effect of oxygen 

concentration on the animal5. One could imagine providing any one of a number of 

chemoattractants, repellants, or pheromones and examining the effects, looking through 

the data with reverse correlation for novel neurons responding to the stimulus, or to 

examine the activity of the ganglion as a whole—it would be surprising if the resting 

pattern found by Kato et al. holds steady under heavy stimulus5. With the use of a 

microfluidic device to deliver mechanical stimulus (Cho et al. in preparation), it would be 

possible to even study the effect of touch, provided the algorithm can mitigate the effect 

of the body deformation. Another possibility would be to provide the worm with a heavy 

dose of a neuromodulator such as a serotonin and observe its effect on neurotransmission. 

 Another straightforward study would be to examine the effect of known synaptic 

mutants or neural activity. Transmission or neuromodulator mutants, or even 

morphological mutants, could be examined for their effect on the behavior of the neural 

population with the simple step of using an existing mutant strain for imaging rather than 

the default N2. Many mutants have subtle or unnoticeable behavioral effects, and this 

would be an intriguing way to more rigorously characterize their effects on the worm, 

perhaps unveiling neurons not previously suspected to have been involved. 

 This is by no means an exhaustive listing of the potential studies enabled by 

Chapter 4, but only an illustration of the clear scientific value of even the simplest of 

modifications to the study protocol—the lowest-hanging fruit, in other words. The field 

of whole brain imaging will have a lot to do, and we hope that this thesis has provided the 

tools.  
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APPENDIX A 

NOMENCLATURE IN THIS THESIS 

 Gene names are italicized and are formed by letters followed by a hyphen 

followed by a number—for example, the gene unc-104. Genes are very frequently named 

for the phenotype caused by a mutation in the gene, since this is often how the gene was 

discovered. This rule is broken for transgenes, which are named based on their original 

name, e.g. gfp. Fusions between two different genes are referred to by connecting the 

parent genes with a double colon, e.g. gfp::syd-2 is a fusion of the proteins gfp and syd-2. 

 Mutant genotypes are, confusingly, often referred to by the same name as the 

gene that is mutated. When clarity is desired, the specific name of the allele will be 

placed in parenthesis afterword. Alleles are usually 1-2 letters followed by a number. For 

example, in unc-104 (wy673), the allele name is wy673. The letters are a special 

designation identifying the lab which isolated the allele; the numbering is assigned by the 

lab. Optionally, the chromosome of the gene will be identified immediately after 

designation, e.g. unc-104 (wy673) II indicates that this gene is on chromosome II. 

 In this thesis, the allele of a mutant will always be identified when confusion is 

possible; otherwise, it will be identified the first time the mutation is mentioned and the 

abbreviated version without the allele name will be used afterward. The chromosome 

number will not be used unless it is relevant to the discussion at hand. 

 Transformed genotypes, which include extra genes compared to the base 

strain—e.g. strains with a fluorescent marker—are named similarly to mutant allele, 

except than an “Ex”, “Is”, or other abbreviation is inserted between the lab code and 

number, indicating whether the extra genes are in an extrachromosomal array (Ex) or 

have been integrated into the genome (Is). In the special case where a targeted gene 

editing approach has been used to insert a gene “in-line” with another gene—that is, 

directly afterward, under the control of the same promoter—the genotype is referred to 
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instead as a specialized allele of the gene where the insertion, e.g. syd-2 (wy1073[gfp(no 

introns)::syd-2]) indicates that this is the wy1073 allele of syd-2, noting that this contains 

in addition a fused gfp::syd-2. Note the use of parentheticals to enclose additional 

information. 

 Strains are named based on 2-letter lab code followed by a number much as 

mutant alleles are—for instance CB4856 or MY14—with a few exceptions dating back to 

the start of field (such as the very common N2 and LSJ2). These are written capitalized 

and non-italicized. 

 Protein names are based on the gene name, and are just capitalized non-italicized 

versions of the gene name. e.g. the unc-104 gene encodes the protein UNC-104. 
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APPENDIX B 

GENETIC MANIPULATION IN C. ELEGANS: AN OVERVIEW 

 This appendix discusses in detail common methods for the genetic manipulation 

of C. elegans and is an extended version of the discussion in Chapter 1, focusing on the 

generation of novel mutants, the insertion of fluorescent, and the combination of different 

strains into one. While this section is intended to provide additional information for the 

interested reader, it is not intended to serve as a complete overview, which would be 

beyond the scope of this thesis. Wormbook may be used for an even more detailed review 

of the topic18, 38, 43, 44, 112. 

Appendix B.1 Generating Novel Mutants 

 The traditional, and most common method, of generating new strains of C. 

elegans is via forward genetics18. This consists of random mutagenesis, followed by 

identification of novel phenotypes and isolation of the mutation responsible. The first 

step is most commonly carried out by temporary immersion of L4 individuals in a 

solution of ethyl methylsulfonate (EMS), a powerful carcinogen that frequently induces 

replacement of G:C nucleotides148, but a variety of other methods exist that achieve a 

more uniformly random set of mutations, including frameshifts149-151. F2 individuals with 

notable differences in the phenotype of interest are identified, and their progeny screened 

for persistence of the phenotype. Finally, these genotypes are repeatedly mated with the 

original parent strain (usually N2), selecting for progeny with the desired phenotype, a 

process called outcrossing. This is done a number of times, usually at least 7, to isolate 

the mutation responsible and eliminate background mutations that are non-germane. 

Finally, the mutant is sequenced, the mutated gene determined, and the new strain may 

eventually be sent to the Caenorhabditis Genetics Center (CGC) for provision to the rest 

of the community. 
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 While this approach to generating mutants is fruitful and provides mutants of use 

to C. elegans community as a whole, it is usually unhelpful for generating mutants in a 

specific gene of interest. If the exact mutant desired is not already available, a more 

targeted approach may be used, involving a zinc-finger nuclease or CRISPR-CAS934-37. 

Because even the most targeted approach generates off-target mutations, outcrossing and 

sequencing is still required. 

Appendix B.2 Fluorescent Marker Insertion 

One of the most useful aspects of C. elegans for the experimenter is its optical 

transparency. This enables the visualization of fluorescently-labeled landmarks within the 

animal without needing to cut open or otherwise physically manipulate the animal. With 

the use of genetically-encoded markers that can be directed by the right promoter to 

specific cells or features, this becomes even more valuable. As such, the successful 

inclusion of genetically-encoded fluorescent markers is an important aspect of C. elegans 

genetic manipulation. The design of appropriate markers, e.g. fusion proteins that 

combine a marker like GFP with a native protein in order to monitor the expression of the 

native protein, is somewhat beyond the scope of this thesis, but I devote some space here 

to the inclusion of these markers into C. elegans strains, a topic of relevance to 

understanding the origins of the numerous strains used in this thesis. 

As mentioned in Appendix A, C. elegans strains which have been genetically 

transformed can be labeled with an abbreviation such as “Ex” or “Is”—although other 

abbreviations, e.g. “IR” for introgression lines, exist. The first refers to the presence of an 

extrachromosomal array that has been introduced by the injection of foreign DNA into 

the gonads of a healthy hermaphrodite. The use of highly repetitive sequences containing 

the gene of interest and a co-injection marker leads to nearly guaranteed recombination in 

the gametes, allowing for the generation of progeny that contain both. Alternatively, the 
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inclusion of fragmented genomic DNA can create so-called “complex arrays” instead, 

which mitigate the strong suppression of tandem repeat expression in the germline38. 

The primary advantage of this approach to genetic transformation is its speed and 

efficacy—with the proper training, a laboratory technician can transform many strains in 

a matter of hours, given properly aged worms and the right DNA fragments on hand. It 

carries, however, a number of downsides. The level of expression of the injected genes 

and co-injection markers is extremely variable, dependent on the number of copies of the 

genes in an array and the number of arrays in a given animal. The transmission of these 

arrays via mitosis and meiosis is extremely variable, and even sibling worms from the 

same parent show substantially variable expression. Further, any such genes expressed 

are usually overexpressed—expressed well in excess of their constitutive expression, 

with frequently unknown phenotypic effects. It is necessary to routinely pick for 

individuals with high levels of the co-injection marker (justifying its inclusion) to 

maintain population expression, and quantitative comparisons of expression intensity 

cannot be made between individuals38. 

The use of the “Is” labeled indicates that the genetic transformation has been 

“integrated” into the genome, forming an integrated strain. A number of techniques exist 

to do this. Methods that begin with a pre-existing extrachromosomal strain rely on 

gamma ray or UV irradiation to generate random DNA strand breaks, after which DNA 

repair enzymes will occasionally incorporate the extrachromosomal strain into the 

genome. Selection for individual homozygous in the co-injection marker and isolation of 

the desired genotype via outcrossing follows. Other, potentially superior methods exist, 

including coinjection of the desired genes with oligonucleotides or bombardment of the 

gonads with DNA-coated gold nanoparticles38, 41. 
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Compared to the extrachromosomal strains, these integrated strains carry a 

number of advantages, the most principle of which is stable expression. While precise 

control of the expression level of the transforming gene is not achieved, expression is 

substantially more stable in descendants of the same ancestor, and also stable for an 

indefinite number of generations without any special maintenance. This can allow for 

much more reliable quantitative comparisons between individuals, and is the reason why 

integrated strains are used for much of the work in this thesis. Transforming genes are 

still overexpressed, however, and the random nature of the gene insertion into the 

genome raises the possibility of undesired phenotypical effects due to effects on native 

genes, in the worst case by directly interrupting and mutating a native gene, which cannot 

be solved by outcrossing. 

 A final and relatively new addition to the arsenal of C. elegans transformation 

arises from the advent of efficient targeted gene-editing techniques, particularly the more 

convenient CRISPR/CAS9 methodologies34-37. Used judiciously, these can be used to 

very carefully insert transforming genes into carefully controlled locations, with control 

over the number of copies inserted and even the possibility of, for instance, placing 

fusion proteins directly in-line with the native protein, achieving control by the same 

promoter. While the potential for off-target insertions still exists, follow-up sequencing 

can be used to verify the location of the insertion in a given single-parent population. 

These techniques possess all the advantages of the usual integrated strains while 

substantially reducing the problem of off-target insertions and providing precise control 

of expression level and copy number, which was not previously possible. Strains 

generated in this manner represent an exciting future direction for accurate quantitative 

imaging, but these techniques have only matured in less than a year before the 

presentation of this thesis. 
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Appendix B.3 Combining Existing Strains when the Background Strain is the Same 

 A very common scenario facing the researcher is the need to hybridize specific 

existing loci into one new strain. In many cases, this can be done without resorting to 

gene-editing tools by exploiting the favorable interbreeding properties of C. elegans. In 

the simplest scenario, when the two genotypes are each confined to specific genetic loci 

against the same genetic background, the procedure is relatively straightforward and will 

be outlined below; the fundamental experimental techniques are the same as the more 

complex case. This assumes the two loci are on different chromosomes; two loci on the 

same chromosome will require chromosomal recombination rather than Mendelian 

genetics for mixing, requiring repeated matings and other complications43, 44. 

 First, the two strains are interbred: a large number of males of one strain are 

placed with a small number of hermaphrodites from the other onto an agar plate seeded 

with a small amount of E. coli—a common ratio is 20 males to 3 hermaphrodites. The 

unbalanced gender ratio and confined conditions created by the animals seeking the small 

spot of food serve to ensure that as many progeny as possible are product of matings.  

 If, as is common, neither of the two strains has a significant number of males, the 

ratio of males may be increased by stressing an L4 population with a brief heat shock, 

typically 30 °C for 6 hours. C. elegans is typically cultured at 20 °C and cannot thrive at 

30 °C. The developing gonads in the L4 worm undergo active meiosis to produce sperm, 

before later switching to ova, and the heat stress significantly increases the rate of 

chromosomal nondisjunction, leading to larger number of sperm with no X chromosome. 

These lead to male progeny in the next generation. If the number of males is still small, 

the ratio of males may then be further boosted by performing a self-mating using the 

progeny. Since the progeny of a male/hermaphrodite mating is 50% male, even a 

relatively balanced mating plate consisting of, for instance, 3 males and 3 hermaphrodites 

will eventually generate a large number of males suitable for interbreeding112. 
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  One common complication is that one or both strains are slow-moving, weak, 

unusually heat-sensitive, or otherwise unsuited to generating males for this process, due 

to the mutation they care. In such cases, the more robust of the two strains must provide 

the males. 

 After initial mating, the challenge then becomes to isolate only those progeny that 

are homozygous for both of the parent genotypes. This is of course only possible starting 

in the F2 generation. The most general, worst-case protocol involves moving F2 

individuals onto new agar plates, one individual per plate, to found new populations. 

Each new population may be sequenced and evaluated for the presence of one of the two 

genotypes, and for the presence of the wildtype genotype. With a probability 25%, this 

population will show the desired genotype and no wildtype, meaning it must have had a 

homozygous parent and by homozygous itself. This population then has a 75% chance of 

containing at least some of the other genotype, and the other genotype may then be 

refined by repeating the same procedure: picking individuals to new plates and examining 

the next generation for homozygosity in the other genotype. Since this is evidently a 

time-consuming, probabilistic procedure bottlenecked by the number of plates established 

after the original F2 generation, it clearly behooves the experimentalist to establish as 

many of these as practicable. At least 12 is recommended, with more suggested if it is 

suspected that the mating might have gone poorly, e.g. if the mutations involved severely 

impact the efficacy of mating. 

 In many, or even most, cases, this long procedure may be significantly abridged 

by the properties of one or the other genotype involved. If either genotype has a visible 

phenotype, even if only visible under a microscope, this may be used to skip the 

sequencing steps, although sequencing the final product is still recommended. It is for 

this reason that certain genotypes, particularly those that were formed by gene 

transformation as in fluorescent strains, often include a co-injection marker, either a very 

bright and obvious fluorescent marker that be inspected under a benchtop fluorescent 
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dissecting scope or a dominant gene that causes an obvious phenotype; the possibility of 

recombination separating the co-injection marker from the actual gene of interest is low 

in only one mating, and may be ruled out by final sequencing.  Even better, if the 

genotype is only partially dominant or recessive, as most mutations are, it may be used to 

evaluate homozygosity in an individual without examining its progeny.  

 In another case, one of the genotypes is located on the X-chromosome and the 

other is not: by mating males of the other strain with the hermaphrodites of the strain with 

the X-chromosome genotype, it is guaranteed that male progeny will carry the X-

chromosome genotype. These may be mated with hermaphrodites from the X-

chromosome genotype to guarantee homozygous progeny, though the non- X-

chromosome genotype will be relatively dilute and cannot be homozygous until the 

generation afterward. 

Appendix B.4 Combining Existing Strains with Difference Backgrounds 

 Another common scenario occurs when it is necessary to integrate a genotype at a 

specific locus into a different target genetic background. For the purposes of this thesis, 

this is particularly relevant for Aim 2, when considering the problem of performing a 

QTL analysis using a phenotype that requires a fluorescent marker to measure, which 

would require the integration of a fluorescent marker into a variety of different 

backgrounds. It is noteworthy that this kind of integration procedure carries with it a 

number of downsides; in many cases, it may be superior to repeat on the target 

background the original procedure that generated the genotype in the first place. In the 

case of genetic insertion for QTL purposes, however, this is inadmissible, as no such 

technique is reliable enough to ensure quantitative comparability between strains, given 

the potential for off-target insertions, uncertainty about copy number, and other 

considerations44. 

 Cursory thought reveals that a single mating is insufficient to perform this kind of 

integration, because one of the paternal chromosomes will contain the original 
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background of the gene being integrated. Once the mating has been performed, it 

becomes necessary to outcross the strain into the target background, while still 

maintaining the gene being integrated, a nontrivial task if the phenotype of the gene 

cannot be easily seen.  

 In the simplest case, where it is possible to observe the phenotype in the 

heterozygote, then outcrossing may be performed by repeatedly mating males of the 

target background into the strain, selecting for heterozygous progeny that contain gene. 

This may be done until the background has probably been fully integrated (>7 matings), 

and then individuals may be picked onto individual plates and evaluated for 

homozygosity. In the other cases, when the heterozygous phenotype cannot be observed 

but the homozygote can, it is necessary to perform a longer protocol. The homozygotes 

can be found in the F2 generation after mating, and males of the target background can be 

used to mate with these. Because recombination can only potentially occur in the 

heterozygote, however, the number of necessary matings is unchanged. In the worst case, 

where even the homozygote cannot be easily phenotyped, it becomes further necessary to 

pick individuals onto their own plates and sequence some of progeny, as it is not possible 

to non-destructively sequence C. elegans individuals. 

 The reliance of this procedure on recombination introduces a number of 

downsides which should be discussed. A co-injection marker, for example, can no longer 

be used as a fully reliable proxy for the gene of interest, as the probability that it has 

become separated during recombination can no longer be neglected, and care must be 

taken to either sequence the strain regularly or not allow the population to bottleneck one 

individual. Perhaps more importantly, recombination occurs properly only among 

homologous regions of the chromosome. If the gene of interest is an insertion, then it 

cannot itself undergo recombination and is prone to causing errors in recombination in its 

immediately vicinity. Finally, of course, it can never be fully guaranteed, only 

probabilistically guaranteed, that the entire target background has truly been transferred, 
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and any potential defects in the overall process lead to a requirement for more crossings 

to ensure success. 
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APPENDIX C 

DETAILED EXPERIMENTAL PROCEDURE FOR IMAGING OF D. 

MELANOGASTER BLASTULAS, T CELL ARRAYS, AND C. 

ELEGANS SYNAPSES 

The purpose of this appendix is to give brief but more detailed experimental 

procedures for the imaging, image processing, and testing of the D. Melanogaster 

blastula and T cell array data used in Chapter 2 for algorithm experimentation. For exact 

experimental procedures, the interested reader may consult Levario, et al. “An integrated 

platform for large-scale data collection and precise perturbation of live Drosophila 

embryos”7 or He, Kniss, et al., “An automated platform enabling dynamic stimuli 

delivery and cellular response readout for high-throughput single-cell signaling 

studies”152. I am indebted to Dr. Thomas J. Levario and Dr. Ariel Kniss-James for the 

text of this Appendix, which has been adapted from Zhao et al. “Rapid, Simple, and 

Versatile Quantitative Phenotyping of Fluorescent Reporters Enabled by Relative 

Difference Filtering and Clustering” (in Submission). 

Appendix C.1 Imaging Protocols 

Appendix C.1.1 Imaging of Histone-GFP D. melanogaster Embryonic Nuclei 

Adult flies expressing histone-GFP were allowed to mate and lay eggs on a fresh 

agar plate for 2.5 hours at 25oC. Embryos were collected from the agar plate, 

dechorionated with 2.5% sodium hypochlorite for 1 min, rinsed with deionized water, 

and suspended in 0.3% Triton X-100 containing phosphate buffered solution (PBST). 

Dechorionated Drosophila embryos were loaded into a previously described microfluidic 

array that automatically orients the embryo for directly imaging the dorsal-ventral plane 

from either anterior or posterior57, 153. Once embryos were loaded, the fluidic connections 

were removed and the device was mounted onto a Zeiss LSM 710 confocal microscope 

with a Zeiss 40x oil immersion objective. Z-slices were obtained ~80 µm from either 
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anterior or posterior pole at one image per minute for 3 hours. Embryos were maintained 

at 25oC throughout imaging via an environmental chamber. Single-photon imaging was 

achieved via 488 nm excitation source while multiphoton imaging was achieved via 920 

nm excitation source. Both embryos were staged such that imaging would encompass the 

early events of embryogenesis that includes gastrulation and ventral furrow formation in 

the developing embryos. 

Appendix C.1.2 Imaging of Array-loaded T cells with Calcium Dye 

Jurkat T cells, from the Jurkat E6-1 human acute T cell lymphoma cell line 

(American Type Culture Collection), were labeled with the cytosolic calcium indicator, 

Fluo-3 AM, cell permeant (Life Technologies). Cells were incubated at 37°C for 40 

minutes with 5 µM Fluo-3 and 0.05% w/v Pluronic F127, washed 3 times with PBS, and 

subsequently loaded into a previously characterized microfluidic device in RPMI without 

Phenol Red(34). Once cells were loaded into the device, images were acquired using a 

FITC filter cube (Omega XF22) with a Nikon Eclipse Ti inverted fluorescent microscope. 

Elements Software (Nikon) was used for time-lapse microscopy with images taken every 

6 s for a total of 60 minutes while cells were stimulated with an oscillatory treatment of 

100 µM H2O2 at a frequency of 2.78 mHz, corresponding to a period of 6 minutes. 

Appendix C.2 Details of Algorithm Implementation 

Image processing is done using Matlab™ R2011a software with custom code. 

Filtering and object removal algorithms are simple, and based on functions included with 

the Matlab Image Processing Toolbox (particularly the function regionprops); these are 

provided as their own functions. Object area is defined straightforwardly as the number 

of pixels within an object; object solidity is defined as area of the object divided by the 

area of the object’s convex hull. Clustering is done using either the Matlab built-in k-

means algorithm or DBSCAN, using the Matlab implementation provided by 

Daszykowski et al87, 154.  
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While most of the steps for the algorithm are identical for all our experimental 

conditions aside from configurable parameters, the last step, cluster selection differs for 

the T cell Array and C. elegans Synapse conditions. In addition, for the D. Melanogaster 

nuclei it was also necessary to identify the center of the embryo for clustering. The details 

are described here: 

Appendix C.2.1 D. melanogaster Embryonic Nuclei 

For the confocal images, no clustering was used, as it was deemed unnecessary. For 

the multiphoton images, to identify the center of the embryo, the following was 

performed: 

1) Identify the center of the embryo: the median-filtered image was thresholded to 

find all regions with intensity less than 10% of the maximum intensity in the 

image. We then evaluated the centroid of the region with the largest area 

(typically the middle of the embryo). 

DBSCAN was then performed on the distance of the segmented objects from the filtering 

step from this centroid, using a neighborhood parameter of 5. 

Appendix C.2.2 Array-loaded T cells  

The K-means clustering parameter used was 18. In order to discard unwanted clusters, 

the following steps were performed: 

1) Identify the row spacing: The 2D-Fourier transform was done on the binary 

image obtained from the filtering step. This was then thresholded according to: 

𝑙𝑜𝑔10|𝐼| + 1 > 4.5 

Because of the nature of the array, the Fourier transform has peaks at [0,0] and 

regularly at the frequency embodied by the row and column spacing of the device, 

with each subsequent peak being dimmer. The chosen threshold eliminates all but 

the first peaks (and the peak at 0). The row spacing is obtained from the vertical 

value of this peak. 
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2) Merge Clusters that are Close: k-means clustering with the given parameters 

occasionally generates multiple clusters in the same row. Sets of clusters where 

the cluster centers are closer than 5 pixels in the vertical direction are merged. 

This aids in the next step 

3) Discard Anomalous Rows of Cells between the Actual Rows: Because of the 

design of the device, rows of out of focus cells often form between in-focus cells. 

These end up in a single cluster after the previous steps. These anomalous rows 

are discarded by first sorting the clusters by the vertical location of their centers, 

then discarding clusters that have the following properties: 

𝑑𝑖,𝑖+1 + 𝑑𝑖,𝑖−1 − 𝑠 < 5 (𝑑𝑖,𝑖+1 ≥ 5, 𝑑𝑖,𝑖−1 ≥ 5) 

Where 𝑠 is the spacing determined from step 1 and 𝑑𝑖,𝑖+1 is the y-distance 

between the current (𝑖th cluster) and the next. 

Appendix C.2.3 C. elegans Synapses 

The DBSCAN clustering parameter chosen was 4. In order to discard unwanted clusters, 

the following steps were performed: 

1) Discard Outlier Objects in each Cluster: For each cluster, the interquartile 

range (IQR) was calculated. Objects that were more than 1.5 times the IQR below 

the 25th percentile or above the 75th percentile in either the x or y-direction were 

deleted from the cluster. 

2) Discard Clusters that Don’t Look like Synaptic Domains: Clusters that failed 

the following criteria were removed: 

a. More than 3 objects 

b. Horizontally oriented (|𝑎| > 0.3 where 𝑎 is the slope of the regression line 

obtained by performing a linear regression on all object centers) 

c. Fewer than 5% of objects that overlap if only the horizontal coordinate is 

considered 
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d. Linearity (residue after linear regression <50 and 𝑟2 < 0.1) 

3) Select Most Linear Cluster 

a. Cluster with smallest residue after linear regression, if this is less than 50 

b. Cluster with smallest 𝑟2, if this is less than 0.1 

c. Otherwise, select no cluster (segmentation failure) 

4) Merge Clusters that look like they Connect with the Chosen Cluster: The 

body of the worm often obscures part of the synaptic domain, disconnecting a 

synaptic domain and causing it to end up in separate clusters. These are 

reconnected by the following procedure: 

a. The leftmost and rightmost object in each cluster is obtained 

b. A biased distance is calculated between the rightmost object of the chosen 

cluster and the leftmost objects of the remaining clusters, as well as vice 

versa. The biased distance is: 

i. 𝑑𝑏𝑖𝑎𝑠 = √∆𝑥2 + 4∆𝑦2 

c. The first cluster that is found to have a biased distance less than 150 is 

merged, and this procedure is repeated until no such cluster is found. 

5) Test whether Objects in Cluster Overlap Vertically: Repeat step 2c for the 

main cluster. Discard if cluster fails. 

6) Discard Cluster if there are less than 10 or more than 30 synapses 

a. This synaptic domain is known to usually have 20-25 synapses. Going far 

outside this range usually indicates a bad image/failed segmentation 

Appendix C.3 Miscellaneous Analytic Methods 

Appendix C.3.1 Evaluating Clustering Accuracy 

Pre-clustering binary images were characterized manually, with each individual 

object within the image labeled as either an object of interest or not. With this manual 

characterization stored, the clustering procedures for each time of image were run for a 
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broad range of parameters, and the output images compared with the manual 

characterization. 

Appendix C.3.2 Extension of Welch’s t-test for Evaluation of Epistasis 

In order to apply Welch’s t-test for the test of epistasis in Fig. 5F, it was necessary 

to evaluate both effective standard deviation and degrees of freedom the combined 

variable: 

(𝑤𝑦673 
𝑛

− 𝑊𝑇 𝑛) + (𝑘𝑚2𝑛 − 𝑊𝑇 𝑛) − (𝑤𝑦673;𝑘𝑚2𝑛 − 𝑊𝑇 𝑛)

= 𝑤𝑦673 
𝑛

+ 𝑘𝑚2𝑛 − 𝑤𝑦673;𝑘𝑚2𝑛 − 𝑊𝑇 𝑛 

where as before A𝑛is taken to be feature 𝑛 of strain A. The standard deviation is readily 

calculated using the linearity of the variance, such that: 

𝜎𝑒𝑓𝑓
2 = 𝜎𝑤𝑦673 𝑛

2 + 𝜎𝑘𝑚2𝑛

2 + 𝜎𝑤𝑦673;𝑘𝑚2𝑛

2 + 𝜎𝑊𝑇 𝑛
2  

The corresponding degrees of freedom can be estimated using the Welch-Satterthwaite 

equation: 

(
𝜎𝑤𝑦673 𝑛

2

𝑁𝑤𝑦673
+

𝜎𝑘𝑚2 𝑛
2

𝑁𝑘𝑚2
+

𝜎𝑤𝑦673;𝑘𝑚2 𝑛

2

𝑁𝑤𝑦673;𝑘𝑚2
+

𝜎𝑊𝑇 𝑛
2

𝑁𝑊𝑇
)

2

𝜎𝑤𝑦673 𝑛

4

𝑁𝑤𝑦673
2 (𝑁𝑤𝑦673 − 1)

+
𝜎𝑘𝑚2 𝑛

4

𝑁𝑘𝑚2
2 (𝑁𝑘𝑚2 − 1)

+
𝜎𝑤𝑦673;𝑘𝑚2 𝑛

4

𝑁𝑤𝑦673;𝑘𝑚2
2 (𝑁𝑤𝑦673;𝑘𝑚2 − 1)

+
𝜎𝑊𝑇 𝑛

4

𝑁𝑊𝑇
2 (𝑁𝑊𝑇 − 1)

 

where 𝑁𝐴 is the sample size of the data gathered for strain 𝐴.  

Welch’s t-test may then be performed as usual.  
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